## Linear Layouts of Bipartite Planar Graphs

Henry Förster, Michael Kaufmann, Laura Merker, Sergey Pupyrev, Chrysanthi Raftopoulou

18th International Symposium on Algorithms
and Data Structures, WADS 2023

## Queue Layouts

- Queue Layout $\Gamma$ of a graph $G=(V, E)$
- linear order $<$ of $V$
- partition of $E$ into queues $Q_{1} \cup Q_{2} \cup \cdots \cup Q_{k}$ such that no two edges of the same queue nest
- ( $u, v$ ) nests $(x, y)$ if $u<x<y<v$

-Queue Number qn $(\Gamma)=k$
- Queue Number qn( $G$ ) of a graph $G=$ smallest queue number of any queue layout of $G$
- $q n(\mathcal{G})$ of a graph family $\mathcal{G}=$ largest queue number of any $G \in \mathcal{G}$ (typically dependent on the number of vertices $n$ )


## Queue Layouts

- Why are queue layouts interesting?
- Curious combinatorial problem
- Theorem: If the queue number and the acyclic chromatic number are bounded, $G$ has a 3D straight-line drawing in $O(n)$ volume. [Dujmović, Wood 2004]



## Queue Number of Important Graph Classes

- Conjecture: The queue number of planar graphs is bounded [Heath, Leighton, Rosenberg 1992]
- Conjecture: The queue number of planar graphs is not bounded [Heath, Rosenberg 2011]
- Theorem: The queue number of graphs of bounded tree width is bounded [Dujmović, Morin, Wood 2005]
- Theorem: The queue number of graphs of bounded degree is not bounded. [Wood 2008]
- Theorem: The queue number of planar graphs of bounded degree is bounded. [Bekos, F., Gronemann, Mchedlidze, Montecchiani, Raftopoulou, Ueckerdt 2019]


## Queue Number of Planar Graphs

- Theorem: The queue number of planar graphs is at most 49. [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019/2020]
- H-Partition $\mathcal{H}=\left(H,\left\{V_{x}: x \in V(H)\right\}\right)$ of $G$
- $\left\{V_{x}: x \in V(H)\right\}$ is partition of $V(G)$

$$
H=\Delta
$$

- For edge $(u, v) \in E(G)$ : Either
$\triangleright u, v \in V_{x}$ (intra-bag) or
$\triangleright u \in V_{x}, v \in V_{y},(x, y) \in E(H)$ (inter-bag)
- BFS-Layering $\mathcal{L}=\left(V_{0}, V_{1}, \ldots\right)$ of $G$
- For each edge $(u, v) \in E(G)$ : Either
$\triangleright u, v \in V_{i}$ (intra-layer) or
$\triangleright u \in V_{i}$ and $v \in V_{i+1}$ (inter-layer)
- $\mathcal{H}$ has layered width $\ell$ if $\left|V_{x} \cap V_{i}\right| \leq \ell$



## Queue Number of Planar Graphs

- Theorem: The queue number of planar graphs is at most 49. [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019/2020]
- For every planar graph $G$ there is an H-partition $\mathcal{H}=\left(H,\left\{V_{x}: x \in V(H)\right\}\right)$ of $G$ with layered width at most 3 and where $H$ is planar has tree width at most 3.
- Such an H-partition can be computed via a BFS rooted at any $r \in V(G)$.
- $t w(H) \leq 3$ and $H$ being planar implies $q n(H) \leq 5$ [Alam, Bekos, Gronemann, Kaufmann, Pupyrev 2018]


## Queue Number of Planar Graphs

- Theorem: The queue number of planar graphs is at most 49 . [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019/2020]
- Construct queue layout as follows:
- Construct queue layout of $H$ with queue number 5
- Replace vertices of $H$ with layered content of bags

- Layout layer by layer consecutively



## Queue Number of Planar Graphs

- Theorem: The queue number of planar graphs is at most 49. [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019/2020]
- Assignment to queues:
- Intra-Bag Edges: 1 queue for intra-layer und 3 for inter-layer

- Inter-Bag Edges for each of the 5 queues of H:3 queues for intra-layer, 6 for inter-layer



## Queue Number of Bipartite Planar Graphs

- How about bipartite planar graphs?
- Now: $G=(A, B, E)$
- $A$ and $B$ are two disjoint vertex sets
- $E \subseteq A \times B$, i.e., $A$ and $B$ are independent sets
- Our first result: The queue number of bipartite planar graphs is at most 28.
- Adjust the proof of Dujmović et al. to obtain 33-queue layout


## Queue Number of <br> Bipartite Planar Graphs

## Theorem: The queue number of bipartite planar graphs is at most 33 .

- H-Partition $\mathcal{H}=\left(H,\left\{V_{x}: x \in V(H)\right\}\right)$ of $G$
- $\left\{V_{x}: x \in V(H)\right\}$ is partition of $V(G)$

$$
H=\Delta
$$

- For edge $(u, v) \in E(G)$ : Either
$\triangleright u, v \in V_{x}$ (intra-bag) or
$\triangleright u \in V_{x}, v \in V_{y},(x, y) \in E(H)$ (inter-bag)
- BFS-Layering $\mathcal{L}=\left(V_{0}, V_{1}, \ldots\right)$ of $G$
- For each edge $(u, v) \in E(G)$ : Either
$\triangleright u, v \in V_{i}$ (intra-layer) or
$\triangleright u \in V_{i}$ and $v \in V_{i+1}$ (inter-layer)
- $\mathcal{H}$ has layered width $\ell$ if $\left|V_{x} \cap V_{i}\right| \leq \ell$
- Now: bichromatic BFS-layering
- $V_{i} \subset A$ if $i$ is even
- $V_{i} \subset B$ if $i$ is odd
- bichromatic layered width


## Queue Number of Bipartite Planar Graphs

## Theorem: The queue number of bipartite planar graphs is at most 33.

- For every planar graph $G$ there is an H-partition $\mathcal{H}=\left(H,\left\{V_{x}: x \in V(H)\right\}\right)$ of $G$ with layered width at $m$ and where $H$ is planar has tree width at most 3.
- Such an H-partition can be computed via a BFS rooted at any $r \in V(G)$.
- $t w(H) \leq 3$ and $H$ being planar implies $q n(H) \leq 5$ [Alam, Bekos, Gronemann, Kaufmann, Pupyrev 2018]
- Triangulation is required later
- Quadrangulate $G$, i.e., add edges until every face is a 4-cycle
- Perform BFS from arbitrary root $r \in V(G)$
- Triangulate quadrangles



## Queue Number of Bipartite Planar Graphs

## Theorem: The queue number of bipartite planar graphs is at most 33.

Assignment to queues:

- Intra-Bag Edges: quave forintra layer und 3 for inter-layer

-Inter-Bag Edges for each of the 5 queues of $H$ :Jqucucsfor intin-tayer, 6 for inter-layer
- Now: bichromatic BFS-layering
- No intra-layer edges



## Queue Number of Bipartite Planar Graphs

- How about bipartite planar graphs?
- Now: $G=(A, B, E)$
- $A$ and $B$ are two disjoint vertex sets
- $E \subseteq A \times B$, i.e., $A$ and $B$ are independent sets
- Our first result : The queue number of bipartite planar graphs is at most 28.
- Adjust the proof of Dujmović et al. to obtain 33-queue layout
- Apply improvements by [Bekos, Gronemann, Raftopoulou 2022] to reduce number of queues by 5


## Graph Product Structure

- Different interpretation of these results: If $G$ is planar, it is a subgraph of $P \boxtimes K_{3} \boxtimes H$ where
- $P$ is a path
- $H$ has treewidth at most 3

- $\boxtimes$ is the strong graph product
- The product of $G_{1}$ and $G_{2}$ has vertices $V\left(G_{1}\right) \times V\left(G_{2}\right)$,
- an edge $((u, x),(v, x))$ if $(u, v) \in E\left(G_{1}\right)$
(similar for $((u, x),(u, y))$ )
- an edge $((u, x),(v, y))$ if $(u, v) \in E\left(G_{1}\right)$ and $(x, y) \in E\left(G_{2}\right)$
- Can we find better bounds for the queue number of bipartite planar graphs?
- Or a better graph product?



## Recursive Definition of Bipartite Planar Graphs

- Edge-maximal bipartite planar graphs are exactly quadrangulations
- Recursive definition for quadrangulations:
- Base graphs: 4-cycle, cube graph, generalizations of the cube graph

- Iterative Steps: Henneberg steps [Felsner, Huemer, Kappes, Orden 2010] simple quadrangulations



## Results for Special Quadrangulations

- Stacked Quadrangulations
- Base graph: 4-cycle
- Iterative Step:

- Subgraphs of $C_{4} \boxtimes H$ where $C_{4}$ is a 4cycle and $H$ is planar and has treewidth at most 3
- Corollary: Queue number at most 21
- 2-Degenerate Quadrangulations
- Base graph: 4-cycle
- Iterative Step:



## Stacked Quadrangulations

- Theorem: Let $G$ be a stacked quadrangulation. Then, $G$ is subgraph of $C_{4} \boxtimes H$ where $H$ is planar and has treewidth at most 3.
- In other words: We iteratively construct an $H$-partition and its tree decomposition.
- Tree decomposition ( $T,\left\{V_{x}: x \in V(T)\right\}$ )
$\triangleright$ for each edge $(u, v) \in E(G)$ there is a bag $V_{x}$ containing both endvertices, i.e., $u, v \in V_{x}$
$\triangleright$ vertices may occur in multiple bags, and
$\triangleright$ for each vertex, the subforest of $T$ induced by ist bags is connected
$\triangleright$ Tree width = \# vertices per bag - 1

- Tree width 3: Each face contains an edge belonging to one bag of $H$ when it is created
$\triangleright$ Plus one vertex corresponding to the cycle added inside the face later


## Results for Special Quadrangulations

- Stacked Quadrangulations
- Base graph: 4-cycle
- Iterative Step:

- Subgraphs of $C_{4} \boxtimes H$ where $C_{4}$ is a 4cycle and $H$ is planar and has treewidth at most 3
- Corollary: Queue number at most 21
- 2-degenerate Quadrangulations
- Base graph: 4-cycle
- Iterative Step:

- Queue number at most 5
- Yet another decomposition technique
- Queue number at least 3
- 259 vertices
- Extends to mixed linear layouts


## Open Problems

- How does the third HENNEBERG step behave w.r.t. the queue number?

- Explicitly construct queue layouts for stacked quadrangulations
- Close the gap for 2-degenerate quadrangulations
- For non-bipartite planar graphs:
- queue number is at most 42
- queue number is at least 4
- Which bound is closer to the truth?

