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Reconfiguration Algorithms

Naomi Mishimura’s Introduction to Reconfiguration in Algorithms, 2018 states:

”Reconfiguration is concerned with relationships among solutions to a 
problem instance where the reconfiguration of one solution to another is 
a sequence of steps such that each step produces an intermediate 
feasible solution”.

Today, I would like to talk with you broadly about reconfiguration, wearing 
two hats:

• Fellow computational geometer

• Former member of the US National Science Board



Reconfiguration Algorithms

• Geometric Reconfiguration: “le pièce de resistance”

• Reconfiguration within the broader landscape of science: “le dessert”
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Reconfiguration Algorithms

• Geometric Reconfiguration:  “le pièce de resistance”

• Reviewing tools for mapping one configuration to another with examples
• A basic reconfiguration step
• A canonical configuration

• Reconfiguration of polygonal subdivisions as motivated by the challenges in 
electing a representative government.

• Reconfiguration in the broader landscape of science: “le dessert”
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Reconfiguration of geometric triangulations
Given two geometric triangulations, T1 and T2 on a finite point
set in the plane, reconfigure T1 into T2 through a sequence of
edge flips.
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Reconfiguration of geometric triangulations
Given two geometric triangulations T1 and T2 on a finite point
set in the plane, reconfigure T1 into T2 through a sequence of
edge flips.

O(n2) edge flips are always sufficient (Lawson, 1972).
Ω(n2) edge flips are sometimes necessary (Hurtado, Noy, Urrutia, 1999)
N P c o m p l e t e   t o  f I n d   f l ip   d  is t a n c e  ( L u b iw,  P a t h a k , 2 0 1 5 )



A set of edges E is simultaneously flippable if the edges
in E are diagonals of pairwise interior-disjoint convex 
quadrilaterals.

Geometric triangulations and edge flips



Geometric triangulations and edge flips

A set of edges E is simultaneously flippable if the edges
in E are diagonals of pairwise interior-disjoint convex 
quadrilaterals.



Geometric triangulations and edge flips

Galtier, Hurtado, et al. (2003): There are triangulations on 
n vertices that contain at most (n - 4) / 5 simultaneous flippable 
edges.



Geometric triangulations and edge flips

Galtier, Hurtado, et al. (2003): There are triangulations on 
n vertices that contain at most (n - 4) / 5 simultaneous flippable 
edges.

Souvaine, Tóth, and Winslow. (2011): Every geometric 
triangulation on n vertices contains at least (n - 4) / 5 
simultaneous flippable edges.



Transforming a perfect matching M into another perfect matching M' 
on the same vertex set S where |S| is even.

Reconfiguring matchings



A transformation between M and M' of length k is a sequence M0,
M1, ..., Mk = M' of perfect matchings of S such that each matching 
Mi is compatible with Mi+1 for i in {0, 1, ..., k-1}.
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For every set of 2n points in general position, the diameter 
of the matching's configuration space is O(log n).

Aichholzer, Bereg, Dumitrescu, Garcia, Huemer, Hurtado, Kano, Márquez, 
Rappaport, Smorodinsky, Souvaine, Urrutia, Wood, 2007.

Reconfiguring matchings



Bichromatic Matchings

A bichromatic matching (BR-matching) is a perfect planar bichromatic matching.



Bichromatic Matching – Does it always exist?



Yes!!  Recursively Find a Ham Sandwich Cut
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Completing a sequence of Ham Sandwich Cuts



e MatchingsA ham-sandwich matching is a BR-matching defined by recursively applying
ham-sandwichcuts.



Reconfiguring bichromatic matchings

Transforming a bichromatic perfect matching M into another bichromatic 
perfect matching.
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Two BR-matchingsare compatible if their union is noncrossing



Bichromatic Matchings
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Bichromatic Compatible Matchings
Is this graphconnected?
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Bichromatic Compatible Matchings

How doweprove it?

It is possible to show that one can get 
from any BR-matching to the canonical 
Ham-Sandwich BR-matching.



A Ham-Sandwich Canonical Match



Original Match



One step:
Given a BR-matchingM and a single ham-sandwichcut C, reconfigure M 
into a BR-matchingthat doesnot intersect C.

`
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`



The Key Tool for doing this:

Theorem. (Abellanas et. al ’08) Given a simple polygon with an even number
of reflex vertices, there exists a perfect planar matching M of its reflex vertices
where every segment of M is contained in the polygon (or on its boundary).
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A Key Tool:

A simple polygon whose reflex vertices are colored either red or blue is well-
colored if the sequence of reflex vertices along its boundary alternates in
color.



A Key Tool:
Polygon Matching Theorem. Given a well-colored
polygon with an even number of reflex vertices, there exists
a BR-matching M of its reflex vertices where every segment
of M is contained in the polygon (or on its boundary).



So how do we invoke that tool?



We consider that very segment has two sides, one colored blue and one
colored red dependingonthe orientation of its endpoints. We connect the 
edges (red-red & blue-blue) in order to create a well-colored simple polygon.



Creating a well-colored simple polygon
Eachfaceoftheobtainedplanarstraightlinegraphiswell-colored, i.e., the
sequenceof reflex vertices alternates in color along its boundary.



Creating a well-colored polygon
We canshrinkevery face(or open up the edges of the original match) to
obtainasimplepolygonthat hasthesame set of reflex vertices.



Creating the new match
We use the Polygon Matching Theorem to obtain a matching of the reflex
vertices inside this polygon.



Bichromatic Compatible Matchings

• The configuration graph is connected: using the tool described above, 
one can move from any BR-matching to another BR-matching through 
a sequence of compatible matches.

• Aloupis, Barba, Langerman, Souvaine, Computational Geometry, 2015

• The diameter of the configuration graph is linear: subsequently, a different 
method verified that one can move from any BR-matching to another other BR-
matching through a sequence of compatible matches of length at most 2n.

• Aichholzer, Barba, Hack, Pilz, Vogtenhuber, Computational Geometry, 2018



Summary

• Across the examples so far:
--- concept of canonical configuaration
--- basic steps for getting there
--- concept of using “thin channels”

• Here are a few references for some of the material we have seen
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Gerrymandering
Analysis

“Gerrymandering is 
a practice intended 
to establish an unfair 
political advantage 
for a particular party 
or group by 
manipulating district 
boundaries”
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Analysis of gerrymandering
Efficiency gap – based on "wasted" 
votes, wA, and wB
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Analysis of gerrymandering
Ensemble-based approach to districting plan analysis
M. Duchin, “Geometry versus Gerrymandering”, Scientific 
American(2018)

• Outlier analysis
• Sample the space using Markov chains



Analysis of gerrymandering
Ensemble-based approach to districting plan analysis
M. Duchin, “Geometry versus Gerrymandering”, Scientific 
American(2018)

• Outlier analysis
• Sample the space
using Markov chains



• : Number of districts (connected subgraphs)
• District map = Connected -partition of adjacency graph

Graph Setting

Pennsylvania Congressional districts 



• Taking a step:
• District map = Connected graph partition 
• Step = switch/flip

Definitions
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• Given two -district maps A and B, find a path between A and B in the 
configuration space via flips.

Problem definition
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• District map = Connected graph partit
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• Combinatorial characterization for the connectedness of this space 
that can be tested efficiently. 

• Constructive proof: worst-case optimal algorithm if connected.

• Hardness results: 
• PSPACE-complete to decide whether there exists a sequence of switches that 

takes a given -district map into another; and 
• NP-hard to find the shortest such sequence (even if a sequence of polynomial 

length is known to exist) 

Our Results



• Taking a step:
• District map = Connected graph partition 
• Step = flip Recombination
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• Taking a step:
• District map = Connected graph partition 
• Step = flip Recombination

• Configuration space:
• Supergraph of switch graph

Definitions



Flip/Recomb comparison



• Slack: deviation from balance

Size of a district is in 

-BCP: Balanced Connected
-Partition with slack 

(known to be NP-hard even for grid graphs)

Definitions



• Given two -BCPs A and B, and slack , find a path between A and B
in the -BCP configuration space via recombinations.

Problem definition



• For unbounded slack ( ), the configuration space is 
connected, and its diameter is at most . 

• If the underlying graph is Hamiltonian, and then the 
configuration space is connected, and its diameter is . 

• Infinite family of negative instances (also Hamiltonian) for 

• Various PSPACE-completeness results for “small” , even when
for any constant .

Our Results



Continuous domain (motivation)

• We need special structure in the graph, else not ergodic or rapid mixing
• Experimental results suggest that real precinct maps are rapid mixing
• Intuitively, refining the underlying graph (increasing “resolution”) makes 

reconfiguration easier
• Instead of a graph -> topological disk (simple polygon)
• Zero slack (balanced districts)



Continuous domain

• Domain: square (area preserving homeomorphism)
• Possibly with a density function 

• Districts: 
• Topological disks (polygonal)
• Prescribed “area” (integral of density function)

• Recomb: merge two adjacent distr. and re-split



Continuous domain

• Polygonal boundaries: complexity
• Corridor: infinitesimal area 

neighborhoods of arc
• Vertical ordering: ordering property

• Easy to achieve by propagating corridors 
along boundaries



• Universal reconfiguration (connected configuration space)
• complexity of the map 
• number of districts

• For districts, moves suffice 
• Intermediate maps have complexity

• For general ,  moves suffice
• Intermediate maps have complexity

• Lower bound (first result of this type):
• Even for districts, moves are necessary 

Our Results



Algorithm ideas

• Focus on case with 3 districts
• Transform map into canonical form (flag) moves

• Transform canonical into desired



Algorithm ideas

• Focus on case with 3 districts
• Transform map into canonical form (flag) moves

• Transform canonical into desired

• Generalize 3-district algorithm to districts 
• Group districts together so they “move” as one
• Base case is 3 districts 
• moves

Potential districts in Wisconsin



Gravity move
• First, reorder districts so that 
• Then, after a gravity move, has 0 area in the canonical region of 



Gravity phase
• After 3 gravity moves, the noninfinitesimal areas are in the right place
• Exchange phase eliminates corridors



Corridor Graph 

• Adjacency of “fat” components
• Since each district is topological disk, the corridor 

graph is a tree
• The corridor graph of the union of two adjacent 

districts is also a tree (ordering property)
• Topology of the map enforces a combinatorial 

embedding of the tree
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Exchange phase

• Consider the union of two districts ( )
• Find “center of mass” of tree 
• There are up to three “contiguous” subtrees 

rooted at each with weight less than half 
(without the weight of )

• By pigeonhole, we can choose so that  
𝑣



Exchange phase

• Consider the union of two districts ( )
• Find “center of mass” of tree 
• There are up to three “contiguous” subtrees 

rooted at each with weight less than half 
(without the weight of )

• By pigeonhole, we can choose so that  

• Recombine giving  entirely to 
• Kill entirely green corridors (ReCom )
• More gravity moves to restore ordering property

𝑣



Analysis

• Each round “kills” at least of corridors
• Initial # of corridors is bounded by 
• rounds reaches canonical 



• Partition into superdistricts of roughly same size ( ).
• Each recombination of a superdistrict is solved recursively (involving 

smaller districts)

•

• ( )  

• Simple idea, but execution needs lots of care

Generalizing for 



Lower bound

• Construction



Lower bound

• Construction

From: https://sallysbakingaddiction.com/



Lower bound

• Analysis 
• Shape of a district in level 

is the same as level 
• Invariant: “gaps” between 

horizontal bars of a district 
are “small”

• Because of a level- obstacle, 
any move produces districts 
of level at least 

• It takes moves to 
reach canonical



Conclusion and Open Questions

We have a tight bound for .
In general, the upper bound is  and lower bound is .
• Can the upper bound be reduced for ?

• Maybe polynomial in both and ? 

• Reduce complexity of intermediate maps (currently )

• Can the lower bound be generalized to arbitrary ?

• In the graph model, how do we “refine" a given precinct map 
to guarantee a connected configuration space?
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The National Science Board:

• Governs the National Science Foundation
• Serves as an independent advisory body for the President and Congress

Every 2 years, the NSB publishes the Science and Engineering 
Indicators of the U.S. in a Global Context – i.e. including data both 
for the U.S. and for other countries.



Science & 
STEM



Source: https://www.nsf.gov/nsb/publications/2020/nsb202015.pdf







Consider the trajectory of Computational Geometry since the founding of SoCG 1985…
In those early days, collaboration was not always easy….
Which makes me particularly grateful for the fabulous collaborations that I have had, many 
of  which are included here:  http://www.cs.tufts.edu/r/geometry/people.php

• Many markers of progress.
• CCCG in 1989 addressed a perceived narrowing of scope of SoCG in 1988 and 

has continued to welcome a broad audience and foster community. 
• SoCG has become a full week with various targeted workshops, many of the 

form “CG *and* …”,  and the young researchers forum.
• SoCG 2023 featured double-blind reviewing.
• SoCG 2023 actively encouraged the submission of applied papers.
• Increased mentoring being offered.

• And yet ….
• The size and the diversity of the community …..
• And questions like “Is Computational Geometry really Computer Science?”



• What can we do actively to
• Further enhance inclusivity in the community
• Use CG to draw many more students both to CG and more broadly to STEM
• Accelerate the impact of CG.

Not clear how to accomplish this “Reconfiguration”
No obvious “Canonical Configurations”



And yet geometry can be accessible!
• Create courses and outreach

• Precollege students
• Precollege teachers
• First-year college non-majors

• Many in this room have developed and participated in programs 
across these categories!!

• A personal example:  Exploring Computer Science
• C/C++, since the CS 1 class is in C.
• Link to a simple subset of LEDA so that every program is visual
• All code reused in the final project on medical diagnosis using live data from 

BME
• Only prerequisite being *no* background in programming.



Simple “first” coding assignment with 
visualization:

Find the area of a polygon.
Shamos & Hoey, 1975



Area of Trapezoid: .5 (yi + yi+1
)(xi+1 – xi )



Advance the value of i.
The next trapezoid has “negative 
area”.
It is subtracted.



Another “positive” area trapezoid



Another negative trapezoid.



Followed by one positive and one negative 
trapezoid.



Animation



On Compatible Triangulations of Simple Polygons
Aronov, Seidel, Souvaine.  Computational Geometry. 1993. [Used in a section of EN 1 for first-year students]



On Compatible Triangulations of Simple Polygons
Aronov, Seidel, Souvaine.  Computational Geometry. 1993



Compatible triangulations



Compatible triangulations

Michael Jackson – Black or White Face morphing



The DIMACS RESEARCH AND EDUCATION INSTITUTE (DREI) took the approach that 
research and education should work hand-in-hand. Collaborations between researchers and educators 
were forged by having separate programs ]focused on each group's interests, along with plenary 
sessions and evening lectures aimed at meshing the two groups with the planned outcome of 
stimulating discussion and problem-solving..

Research Program:
Software and Mathematical Visualization, June 24 – 28, 1996
Computational Geometry Problems in Aerodynamics, July 1-3, 1996
Hot Topics in Computational Geometry, July 8-12, 1996

Teacher Program,  June 24-July 12, 1996
A hands-on computing and internet laboratory
Workshop focusing on computational geometry and discrete mathematics



Questions

• How can we collectively contribute to further “reconfiguration”:
• Increase prompt impact of Computational Geometry results?
• Contribute to allowing pre-college teachers to gain versatility?
• Use Computational Geometry to help create more on-ramps broadly into 

science for students?
• Foster greater diversity in our own research groups?
• Share successful strategies with each other?

Hoping to attend CCCG and SoCG in 2033 with a far greater number 
and diversity of participants and a greater balance between theoretical 
and applied/translational.


