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Some Classic Packing and 
Covering Problems in Geometry
• Convex Cover: Cover a polygon P with fewest convex 

subpolygons

• Hidden Set: Max # points packed in P (no 2 see each 
other)

• Art Gallery/Guarding Problem: Cover P with fewest 
star-shaped subpolygons (fewest guards)

• Maximum Independent Set: geometric objects

• Mobile coverage: watchman routes
• Min-length full coverage routes
• Max coverage routes of bounded length
• Coordinated routes: segment sweeping



Convex Cover of Simple Polygon P



Convex Cover of a Simple Polygon

• CC: Given a simple polygon P with n vertices, cover P 
with min # convex polygons within P

• NP-hard, APX-hard

• O(log n)-approx

• New: 6-approx 

[Abrahamsen, FOCS 2021]

[Reilly Browne, Prahlad Narasimham Kasthurirangan, JM, Valentin Polishchuk, to appear, FOCS 2023]

[Eidenbenz, Widmeyer, 2003]



Hidden Set of Points in P
HS: Given a simple polygon P, pack as many points in P so that no two see each other



Hidden Set

• HS: Given a simple polygon P, pack as many points in P so 
that no two see each other

• No 2 hidden points can be in the same convex subset of P:  

hs(P) ≤ cc(P)

• APX-hard [Eidenbenz, 2002]

• No prior approx to compute hs(P)
For hidden vertex a ¼-approx is known

• New: 1/8-approx for hs(P)
[Reilly Browne, Prahlad Narasimham Kasthurirangan, JM, Valentin Polishchuk, to appear, FOCS 2023]

[Alegria, Bhattacharya and Ghosh, EuroCG’19]



Overview

• Give a 2-approx for cc(P) if P is weakly visible from W
• Cover edges (except W) of P: formulate as a path cover

• Obtain k convex polygons (k paths in min path cover in DAG)

• Dilworth: “antichain”: k edges no two of which are strongly visible

• Lemma: k hidden points, one on each edge of antichain

• Thus, OPT cc(P) ≥ k

• Cover all of P by adding k additional triangles, one 
associated with each path

• General P: In a window partition of P, no convex body 
intersects more than 3 faces, each of which is a 
weakly visible polygon

W



DAG:  G=(V,E)    where V={edges of polygon},   E={ (e,e’):  CH(e,e’)  P }

Path cover problem: Cover all nodes V with fewest directed paths in G.

[solve: using flows;  [CLRS] ]
𝑃𝜋 (red) is convex

𝑃′𝜋 (red union blue triangle) is convex

e
e’

Property of weakly visible P:



Example: 5 paths covering all edges of P

W



Augment with blue triangles:  𝑃′𝜋

W



DAG:  G=(V,E)    where V={edges of polygon},   E={ (e,e’):  CH(e,e’)  P }

Path cover problem: Cover all nodes V with fewest directed paths in G.

[solve: max bipartite matching;  [CLRS] ]
𝑃𝜋 (red) is convex

𝑃′𝜋 (red union blue triangle) is convex

Add green 
triangle, 
one per 
path/ 𝑃′𝜋



Add green triangles to cover all of P



Lemma: All of P is covered by augmented 
path polygons, green triangles



Hidden Set from Antichain of Edges

Antichain of 7 edges (red)

W



Hidden Set from Antichain of Edges

Hidden set of 7 points (red)

W





Weakly Visible Simple Polygon P

• Theorem: For weakly visible P, we can compute a 
set B of at most 2k convex polygons covering P, 
where k= #paths=|largest antichain|

2-approx for CC(P)

½-approx for HS(P)



General Simple Polygon P

• Use a window partition of P; faces are 
weakly visible

• Lemma: 

Any convex K in P intersects ≤3 faces

Faces are of 4 types: even/odd link 
distance, from source s; left/right window 
pocket. 

No point p in a face of type i{1,2,3,4} can 
see any point in another face of type i



Window Partition: 
Link Distance Map LDM(s)

Staged illumination: Windows are yellow; colors 
indicate regions of the same link distance from s



Summary

Polytime 6-approx algorithm for convex cover (CC) of a 
simple n-gon; 1/8-approx algorithm for hidden set (HS) 

Prior: O(log n)-approx for CC, in time O(n29 log n)  [Eidenbenz, Widmayer, SICOMP 2003]

Factors are better for weakly visible polygons:
2-approx for CC, ½-approx for HS

Combinatorial bounds shown:
cc(P) ≤ 8*hs(P), confirming a conjecture from [Browne & Chiu, YRF’22]
cc(P) ≤ 2*hs(P), for weakly visible P

Polygons with holes?    
HS cannot be 𝑛𝜀 -approximated, for some >0 (unless P=NP) [Eidenbenz]
CC is APX-hard, has O(log n)-approx [EW’03]: Can this be improved?



Determine a small set of guards to see all of a given

polygon P

5 guards suffice to cover P
(what about 4 guards? 3?)

Min-Guard Coverage Problem



Lower Bound on g(P)

• Fact: If we can “pack” w visibility independent witness 
points, then g(P) ≥ w.

g(P)  4

g(P) ≤ 4;  thus, g(P)=4



Witness Number

• Let w(P) = max # of independent witness points 
possible in a set of visibility independent witness 
points for P

• Then, g(P) ≥ w(P)

• Compute g(P): NP-hard, APX-hard, ∃ℝ-complete 

• DP allows one to compute w(P)

Some polygons have g(P)=w(P); I call these perfect polygons –
they are very special; many (most?) polygons P have a “gap”: 
g(P)>w(P)    Characterize perfect polygons?

[at least if candidates given]



Guarding: Experimental Investigations

• Early work:
• [AMP] Proposed/implemented several heuristics for 

computing guards
• Experimental analysis and comparison
• Compute both upper bounds and lower bounds on 

OPT, so we can bound how close to OPT we get

• Conclude: heuristics work well in practice: 
• Either find OPT solution or close to optimal
• Almost always 2-approx (always for “random” polygons)

• More recent: Sophisticated methods based on LP/IP, 
and understanding of combinatorial structure
Extensive experiments, achieving optimal solutions

[Amit,M,Packer]

[Sandor Fekete et al; Cid de Souza et al]
www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery/AGPPG

[Hengeveld,Miltzow SoCG’21]: practical methods, vision stability 



A1 A2 A11

Examples: n=100

I=13 

I=12 

Note: All of these are “nearly perfect”

[Amit,M,Packer]

[AMP]



More Examples

Spike box

A1
[Amit,M,Packer]

[AMP]



More Examples

A1
[Amit,M,Packer]

[AMP]



Complexity of Computing Guards

• NP-hard, even in simple polygons, terrains

• APX-hard in simple polygons

• Need for irrational guards

• ∃ℝ-complete (unlikely in NP) 

[Miltzow,Adamaszek,Abrahamsen,SoCG’17]

[Miltzow,Adamaszek,Abrahamsen,JACM’21]



Approximation Algorithms

Approximation algorithms for discrete candidate sets 
(vertex guards, grid-point guards, etc):

•O(log n)-approx:  set cover (greedy)   [G87]
•O(log g*)-approx: reweighting ([Cl,BG]) [EH03,GL01]
•O(loglog g*):                                                      [KK11]
•O(1)-approx in special cases:

1.5D terrains (O(1), PTAS) [BKM05,K06,EKMMS08,GKKV14]

Monotone polygons [Ni05]
Triangle-free arrangements (3-approx)                 [JN14]

•PTAS:
Bounded depth, bounded vision disks  [AKMY12]

Robust (one model) guarding                      [M]

Pseudo-poly O(log g*)-approx (poly in spread, n) [DKDS07]

Point guards (any, but integer coords,nondeg P): O(log g*)-approx

Exact poly-time solutions:
•Rectangle visibility in rectilinear polygons [WK06]
•Partitioning P into min # star-shaped pieces [Ke85]
•Min-length watchman tour (mobile guard) [CN86,…]

[Bonnet,Miltzow,SoCG’17] (correcting [DKDS07])

(diagonals)



Notions of Robust Guarding

• k-guarding
• [Busto,Evans,Kirkpatrick’13]  O(k loglog g*)-approx in simple 

polygons  (use (, k)-nets)

• Angle-constrained 2-guarding

• Triangle guards

• (,R)-guards

• Universal guards

• Polygons with vision stability  [Hengeveld,Miltzow, SoCG’21]

• -robust guards  [Das,Filtser,Katz,M, 2023]



Angle-Constrained 2-Guarding
[Efrat, Har-Peled, M]



Main Idea
[Efrat, Har-Peled, M]



Angle-Constrained 2-Guard Cover
[Efrat, Har-Peled, M]

(dual approx)



Triangle Guarding
[Efrat, Har-Peled, M]

NP-hard



Triangle Guarding

• Method:  Find a min-link cycle surrounding Q, and 
place guards at these vertices

• Analysis: OPT can be converted to a set of 3|OPT| 
points outside of Q, within P, such that the VGP-Q of 
these points is connected, and Q lies within a face 
of the arrangement

• Result: O(log OPT)-approx

Thm: Complexity of face is O(OPT log OPT), since 
O(OPT) vertices in this arrangement.   [AHKMN, DCG]



55

(,R)-Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of 
guards, could we know with confidence the domain is really 
guarded?

Guards may not be placed exactly.  (Human guards don’t usually 
stand exactly still, and cameras/sensors cannot be placed 
perfectly.)

Model:  When a guard is 
placed at p, it will actually 
reside at some point within a 
disk, B(p), of radius 

p

q

In order for q to be “seen” by 
guard p, it must be able to see 
the guard no matter where it is 
within the disk B(p)

Bounded radius, R, of vision

R

Useful model for guarding point-cloud models of domains
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Theorem:  There is a PTAS for computing a min # of robust, radius-
bounded guards in a polygonal domain (with holes), assuming R/ is 
bounded, and a poly-size set G of candidate guard locations is given.

Robust Guards: Approximation

One option for G: use a set L of O(l log2 l) 
landmarks, as in [AEG08], and then guarantee at 
least (1-1)-fraction of the area is seen.

l = (gopt /1) log h          (h = # holes)

[AEG08] also give randomized greedy 
algorithm that, whp, computes O(gL log l) 
guards to cover L, where gL ≤ gopt is opt # of 
guards to cover L

Method:  m-guillotine optimization:  Convert any OPT to an m-guillotine 
version; apply DP to optimize
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Suffices:  Visible regions, VP(g), from candidate guard locations gG have 
area(VP(g)) ≥ c diam2(VP(g)), for some c.  (e.g., each VP(g) contains a disk 
of radius Ω(diam(VP(g)) )

What is Needed for PTAS to Apply

Another Sufficient Model:  
Sample points S in P.
Guards placed at subset of S.
Guards must see all of S:  Problem is Dominating Set in VG(S)

If samples S are -well dispersed (e.g., no disk of radius  has more than 
O(1) samples of S), and guards have visibility radius R, with R/ bounded, 
then PTAS also applies

Minimum Dominating Set:
best approx in general is log-approx
PTAS for planar graphs, UDG
APX-complete for degree-B, B≥3

Here, the graph VG(S) is not planar, not UDG, but has 
bounded degree, depending on R/

Special Case: Bounded 
radius visibility in 
polyominoes



Guarding “Fat Vision” Polygons

• If P has the property that for every point p in P the 
polygon VP(p) is -fat, we say P is “fat vision”

• Theorem: For fat vision P (even with holes), we can 
compute a set Q of O(n2) points such that Q 
contains a guard set of size O(OPT).

• Theorem: For fat vision P (even with holes), there is 
an O(-3)-approximation algorithm, poly(n).

Dependence on :  |Q|=O(-1 n2), approx factor O(-1)

P is fat vision
P is not fat

P is fat 
P is not fat vision

[Das,Filtser,Katz,M, 2023]



Robust Vision Guarding

Point g is said to -robustly see point p iff p is seen by 
a guard that is anywhere inside the disk D(g, |gp|)

[Rathish Das, Omrit Filtser, Matya Katz, JM, 2023]

g

p

=0.25

Note that many guards may be needed to -robustly guard a skinny polygon:



What does g see -robustly? 

Vis(g) is O()-fat, and can be computed efficiently



Method/Results

• Compute a carefully crafted discrete set Q of 
candidate guards

• Apply a greedy algorithm and prove:

Time is polynomial in (input,output)



More General Definition



Maximum Independent Set (MIS)

Best known polytime approx factor:  O(n/log2 n)  [Boppana-Halldórsson]

No polytime algorithm with approx n1- for >0, unless P=NP
PTAS in planar graphs

[Zuckerman]



Can Geometry Help?



A Basic Geometry Problem

Maximum Independent Set (MIS):

Given a set S of bodies in the plane.

Find a max-cardinality subset, S*, that is 
pairwise-disjoint.



MIS=Most Efficient Social Distancing







Approximations
• Disks, fat regions: PTAS

• Rectangles: MISR
– QPTAS

• npoly((log n )/ε) [Adamaszek, Har-Peled, and Wiese]

• nO( ((loglog n)/ε)  ) [Chuzhoy and Ene]

– PTAS for “long” rectangles [Adamaszek, Har-Peled, and Wiese]

– Polytime: O(loglog n)-approx [Chalermsook, Chuzhoy]

– Parameterized Approximation Scheme: 

For any k, ε, in time f(k, ε)ng(ε) either gives indep subset of 
≥k/(1+ ε), or declares OPT<k 

– Here: O(1)-Approx in polytime

4

(1-ε)-approx, for any ε>0, in polytime

[Grandoni,Kratsch,Wiese,2019]

(1- ε)-approx in 𝑛𝑂(1/𝜀
𝑑−1) [Chan]

Also: PTAS for pseudodisks [Chan, Har-Peled]

Rectangles are neither fat nor pseudodisks!



MISR: One Approach
• Show that any set of disjoint rectangles (e.g., 

the rectangles of OPT) has a constant fraction 
subset that has a perfect BSP (or “guillotine separable”)

Pach-Tardos Conjecture

No “free” guillotine cut Subset (3/4) has perfect BSP

cut

Then apply DP to rectangular “subproblems”



Main Ideas
• Use more general cuts to get O(1) complexity 

pieces – one class “CCRs”

• Use K-ary cutting instead of just binary

• Charging scheme to prove a structural 
theorem: Can afford to discard a constant 
fraction of input rectangles, to enable a 
“nearly perfect CCR-partition”

• DP to optimize 

K≤3



Maximal Rectangles

• Transform any set I of k disjoint rectangles 
into a set I’ of maximal disjoint rectangles

Will show that I’ 
has a constant-
fraction subset for 
which there is a 
“nearly perfect 
CCR-partition” wrt
the subset



Nesting Among Maximal Rectangles

Def: A rectangle R is nesting
to its left/right/top/bottom 
if its corresponding side is 
contained in the interior of 
an abutting rectangle’s side 
(or the side of the BB, B)

R1

R2

R3

Example:
R1 is horiz nested (red)
R2 is vert nested (blue)
R3 is not nested in any direction

R



Why Maximality Is Useful

Note that the claim is not true 
without maximality:



Why Nesting Concept Is Useful

If R is not nested on at least one side, there is 
hope to be able to “charge” R to a corner, c, 
when a cut segment crosses R

R
c

cut



CCR-Partitions

• Recursive partitioning of the BB, B, of input

• Each face Q is a CCR  

• A cut, consisting of O(1) hor/vert segments 
partitions Q into at most 3 subfaces (CCRs)

• A CCR-partition is perfect wrt input rectangles 
if no rectangle is penetrated by a cut segment, 
each leaf face has exactly 1 input rectangle

• Nearly perfect CCR-partition: each cut segment 
penetrates at most 2 input rectangles, each 
leaf face has ≤1 input rectangle



Nearly Perfect CCR Partition



The Structure Theorem



The Algorithm: DP Subproblem

Subproblem S=(Q,IS), 
where IS is a set of 
“special” (specified) 
rectangles, at most 2 
per vertical side of the 
CCR face Q. 

Q



Dynamic Program

• Optimize over K-ary cuts (K≤3) for a CCR 
subproblem, S, to compute f(S), the max 
cardinality of an indep subset of input rectangles 
for which there is a nearly perfect CCR-partition

Here, 𝐼𝜒 is the set of rectangles (at most 2 per vertical segment of χ) that are penetrated by 

vertical cut segments and become special rectangles specified for the new subproblems, and 
𝛾 𝒮 is the set of all eligible K-ary CCR-cuts

Crudely counted: time is O(n21)



Better Factors

• Original factor (Jan, 2021): 10

• Here: 4 [FOCS’21]

• Small variant: Offload charge on Rr if both left 
corners charged (cases (5),(6)), by examining its 
top-left neighbor:   Get factor 10/3

• Continuing: 22/7,….., (3+ ε)

• Further improvements:

– Factor 3 [SODA’22], (2+ ε) [Galvez,Khan,Mari,Momke,Reddy,Wiese]

Now: fence may penetrate 2 rectangles instead of 1
Still get O(1) complexity subproblems



Combining Coverage, Routing

• Optimal routing problems:
• Optimal routes/networks to visit regions

• Optimization of routes for vision/coverage

• Aspects of particular interest:
• Uncertainty, robustness of solutions

• Handling time constraints

• Motivating applications:
• Robotics

• Sensor networks

• Vehicle routing, logistics



Cooperative Heterogeneous Vehicle Mission Planning

• Vehicles:  various classes (ground, air, sea), speeds, 
capacities, capabilities

• Targets: points, regions; mission task times; 
precedence constraints

• Constraints: domains of operation; tethers 
(distance); rendezvous requirements, formations

• Tactical vs strategic; online vs offline

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic 
battlefield 



Missions for Agents, UAVs
Types of mission tasks: 
• Visit target site (point) p
• Visit (any point) of target region R

• Possible constraint: Mission time (minimum) 
within R

• View a target (point/region) T: visit any 
point that is visible to T       “watchman 
route problem”

• Sweep a target region (recon, search), W

W

T

R

p

[Jia, Mitchell, 2019:  TSPN with time lower bounds.    
PTAS, dual approximation algorithms]



Covering Tours

• Cover a point set S

Just geometric TSP



Covering Tours
• Cover a set of disks

TSP with (circular) neighborhoods

•Gather data from sensors
•Cover imprecise points
•School bus route



Sensor Network Application: 
Cover Tour Problem

Alt, Arkin, Bronnimann, Erickson, Fekete, Knauer, 
Lenchner, M, Whittlesey, SoCG’06

Min: Tour length + C * (sum of radii)

Result: PTAS

Q: Min Tour length + 
C * (sum of radii2)?

C > 4 ; else OPT is 
a single disk



Lawnmower/Milling Problem

Best method of 
mowing the lawn?

TSPN: Visit the disk 
centered at each blade 
of grass

[AFM]



Pocket Machining
[Martin Held]



Watchman Route Problem
 Cover set of all visibility polygons

Watchman Route Problem  (WRP)

Subject to: stay 
inside polygonal 
domain P



Watchman Route Problem
 SoCG 1986: Chin and Ntafos

• NP-hardness in 2D,3D; 

• O(n) in rectilinear, simple polygons

 WRP in simple polygons: polytime
• Long history…Current fastest: O(n3log n) for anchored,    

O(n4log n) for floating

Revisited:[Dumitrescu, Toth 2012]

[STOC 2003: Dror, Efrat, Lubiw, M]



WRP Approximation

 Simple polygons:
• Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004]

• 14(p+4)=99.98-approx, O(n log n), for floating [Carlsson, 
Jonsson, Nilsson, TR 1997]

• 2-approx, O(n), for floating [Tan, TCS 2007]

• 4-approx, O(n2), for min-link [Alsuwaiyel, Lee, IPL 1995]

 Polygons with holes?
• O(log n)-approx, rectilinear, rectangle-visibility

 WRP in 3D: No constant-factor, unless P=NP
[Safra, Schwartz 2003]

SODA’13: O(log2 n), (log n)

(log n), even for terrains



General Case: WRP in Polygonal 
Domain (2D)

 Theorem: The WRP has an O(log2 n)-
approximation algorithm.

 Also: WRP has an O(log n)-approx in 
domain P satisfying the bounded 
perimeter assumption (BPA): 
perim(VP(p)) = O( diam(VP(p)), for p in P 

[M, SODA’13]

e.g., bounded degree 
corridor domains



Main Ideas

 Localization: Consider a 
polynomial # of “minimal 
outer-illuminating squares” 
(MOIS), B, that OPT passes 
near/through

 Discretization: Show that the 
continuous problem can be 
discretized, using an 
appropriate grid

B

p

B

B’



Main Ideas

 Solve 2 separate problems:
• OWRP: Outer WRP:  Find a 

short tour g within P that sees 
all of P outside the tour.  
 Discrete-OWRP:  exact DP algorithm

 OWRP: PTAS

• IWRP: Inner WRP: For a given
simple closed curve, g, within P, 
augment g (if needed) into a 
short network that sees all of 
P that is inside g.  
 O(log2 n)-approx

 Combine

g

p

g



Budgeted Watchman Route Problem

 BWRP: See as much as possible (e.g., area) on 
a route of length at most L

 QWRP: Quota WRP: See area at least A using 
shortest route possible

[ongoing work with Kien Huynh, Linh Nguyen, Valentin Polishchuk]

Orienteering Watchman

Special case: L=0: Find a point guard to see as much as possible [CEH, DCG’07]



Hardness of BWRP

From KNAPSACK 

Hardness also of QWRP, from INVERSE-KNAPSACK



Approximation Algorithms
 Method for simple polygon P:

• Localization of OPT (or possible depot, s)

• Discretization (round to appropriate grid)

• Dynamic programming

 BWRP: An FPTAS, poly(n,1/), to 
compute a tour seeing area ≥(1-)*OPTL, 
using length ≤(1+ )L

 QWRP: An FPTAS, poly(n,1/), to 
compute a tour seeing area ≥(1-)*A, 
using length ≤(1+ )*OPT

“floating”, convex, no s:  𝑛
𝑂(

1

𝜀
)



Polygons with Holes

From Max-k-Vertex-Cover in cubic graphs

For any  ≤ 2



Practical Methods

[thesis, Dominik Krupke, 2022; Fekete+Krupke, ALENEX’19]

Sweeping with a bounded radius disk



More Sweeping
 Sweeping with chains of visible agents, 

to “clean” a polygon with mobile evader

 Sweeping with a pair of agents/segment

[Kien Huynh, JM, Val Polishchuk]

[Efrat,Guibas,Har-Peled,Mitchell,Murali DCG]



Sweeping with 2 Covisible Guards

 NP-hard, even in a simple, orthogonal polygon

 O(1)-approx
• Simple polygons

• Polygons with holes

[Kien Huynh, JM, Valentin Polishchuk, 2023]


