Approximation Algorithms for Some Geometric Packing and Covering Problems

Joe Mitchell

In memoriam: Godfried Toussaint 7/31/44-7/14/19
WADS, July 31, 2023
Support from NSF, DARPA, Sandia National Labs, US-Israel Binational Science Foundation

Some Classic Packing and Covering Problems in Geometry

- Convex Cover: Cover a polygon P with fewest convex subpolygons
- Hidden Set: Max \# points packed in P (no 2 see each other)
- Art Gallery/Guarding Problem: Cover P with fewest star-shaped subpolygons (fewest guards)
- Maximum Independent Set: geometric objects
- Mobile coverage: watchman routes
- Min-length full coverage routes
- Max coverage routes of bounded length
- Coordinated routes: segment sweeping

Convex Cover of Simple Polygon P

Convex Cover of a Simple Polygon

- CC: Given a simple polygon P with n vertices, cover P with min \# convex polygons within P
- NP-hard, APX-hard
- O(log n)-approx
[Eidenbenz, Widmeyer, 2003]
$\exists \mathbb{R}$-complete. [Abrahamsen, focs 2021]

- New: 6-approx

Hidden Set of Points in P

HS: Given a simple polygon P, pack as many points in P so that no two see each other

Hidden Set

- HS: Given a simple polygon P, pack as many points in P so that no two see each other
- No 2 hidden points can be in the same convex subset of P : $h s(P) \leq c c(P)$
- APX-hard [Eidenbenz, 2002]
- No prior approx to compute hs(P)

For hidden vertex a $1 / 4$-approx is known [Alegria, Bhattacharya and Ghosh, EurocG'19]

- New: 1/8-approx for hs(P)
[Reilly Browne, Prahlad Narasimham Kasthurirangan, JM, Valentin Polishchuk, to appear, FOCS 2023]

Overview

- Give a 2-approx for cc(P) if P is weakly visible from W
- Cover edges (except W) of P: formulate as a path cover
- Obtain k convex polygons (k paths in min path cover in DAG)
- Dilworth: "antichain": k edges no two of which are strongly visible
- Lemma: k hidden points, one on each edge of antichain
- Thus, OPT cc(P) $\geq \mathrm{k}$
- Cover all of P by adding k additional triangles, one associated with each path
- General P: In a window partition of P, no convex body intersects more than 3 faces, each of which is a weakly visible polygon

DAG: $G=(\mathrm{V}, \mathrm{E}) \quad$ where $\mathrm{V}=\{$ edges of polygon $\}, \quad \mathrm{E}=\left\{\left(\mathrm{e}, \mathrm{e}^{\prime}\right): \mathrm{CH}\left(\mathrm{e}, \mathrm{e}^{\prime}\right) \subseteq \mathrm{P}\right\}$ Path cover problem: Cover all nodes V with fewest directed paths in G .
$P_{\pi} \quad(\mathrm{red})$ is convex
[solve: using flows; [CLRS]]

Property of weakly visible P:
Fact 3.1. [Chord property] If $a b \cap C(a, b)=\{a, b\}$, then a and b see each other.

Example: 5 paths covering all edges of P

Augment with blue triangles: P_{π}^{\prime}

DAG: $G=(V, E) \quad$ where $V=\left\{\right.$ edges of polygon\}, $E=\left\{\left(e, e^{\prime}\right): C H\left(e, e^{\prime}\right) \subseteq P\right\}$ Path cover problem: Cover all nodes V with fewest directed paths in G .
$P_{\pi} \quad($ red $)$ is convex
[solve: max bipartite matching; [CLRS]]
P_{π}^{\prime} (red union blue triangle) is convex

Add green triangle,
 one per path/ P_{π}^{\prime}

Fact 3.1. [Chord property] If $a b \cap C(a, b)=\{a, b\}$, then a and b see each other.

Add green triangles to cover all of P

Lemma: All of P is covered by augmented path polygons, green triangles

Theorem 3.5. For a weakly visible polygon P, there is a polynomial-time algorithm to compute a set of at most $2 k$ convex polygons within P that cover P, where k is the size of an optimal path cover of G.

Hidden Set from Antichain of Edges

Lemma 3.6. Given an antichain I in G, we can compute in polynomial time a set H of $|I|$ points, each interior to one of the edges of I, such that H is a hidden set (no two points of H are visible to each other).

Hidden Set from Antichain of Edges

Lemma 3.6. Given an antichain I in G, we can compute in polynomial time a set H of $|I|$ points, each interior to one of the edges of I, such that H is a hidden set (no two points of H are visible to each other).

4 pockets induced by $\gamma_{j k}$, with one degenerate pocket (single edge)

Weakly Visible Simple Polygon P

$$
k=|H| \leq h s(P) \leq c c(P) \leq|B|=2 k
$$

- Theorem: For weakly visible P, we can compute a set B of at most $2 k$ convex polygons covering P, where $\mathrm{k}=$ \#paths=|largest antichain|

2-approx for $\mathrm{CC}(\mathrm{P})$
$1 ⁄ 2$-approx for HS(P)

General Simple Polygon P

- Use a window partition of P; faces are weakly visible
- Lemma:

Any convex K in P intersects ≤ 3 faces
Faces are of 4 types: even/odd link distance, from source s; left/right window pocket.
No point p in a face of type $i \in\{1,2,3,4\}$ can see any point in another face of type i

Window Partition: Link Distance Map LDM(s)

Staged illumination: Windows are yellow; colors indicate regions of the same link distance from s

Summary

Polytime 6-approx algorithm for convex cover (CC) of a

 simple n-gon; 1/8-approx algorithm for hidden set (HS)
$O\left(n^{2+o(1)}\right)$ time

Prior: $\mathrm{O}(\log \mathrm{n})$-approx for CC , in time $\mathrm{O}\left(\mathrm{n}^{29} \log \mathrm{n}\right)$ [Eidenbenz, Widmayer, SICOMP 2003]
Factors are better for weakly visible polygons:
2-approx for CC, ½-approx for HS

Combinatorial bounds shown:
$\mathrm{cc}(\mathrm{P}) \leq 8^{*} \mathrm{hs}(\mathrm{P})$, confirming a conjecture from [Browne \& Chiu, YRF'22]
$c c(P) \leq 2 * h s(P)$, for weakly visible P
Polygons with holes?
HS cannot be n^{ε}-approximated, for some $\varepsilon>0$ (unless $\mathrm{P}=\mathrm{NP}$) [Eidenbenz]
CC is APX-hard, has O(log n)-approx [EW'03]: Can this be improved?

Min-Guard Coverage Problem

- Determine a small set of guards to see all of a given polygon P

5 guards suffice to cover P (what about 4 guards? 3?)

Lower Bound on g(P)

- Fact: If we can "pack" w visibility independent witness points, then $g(P) \geq w$.

Witness Number

- Let $w(P)=$ max \# of independent witness points possible in a set of visibility independent witness points for P
- Then, $g(P) \geq w(P)$
- Compute $g(P)$: NP-hard, APX-hard, $\exists \mathbb{R}$-complete
- DP allows one to compute $\mathrm{w}(\mathrm{P})$ [at least if candidates given]

Some polygons have $g(P)=w(P)$; I call these perfect polygons they are very special; many (most?) polygons P have a "gap": $g(P)>w(P) \quad$ Characterize perfect polygons?

Guarding: Experimental Investigations

- Early work:
- [AMP] Proposed/implemented several heuristics for computing guards [Amit,M,Packer]
- Experimental analysis and comparison
- Compute both upper bounds and lower bounds on OPT, so we can bound how close to OPT we get
- Conclude: heuristics work well in practice:
- Either find OPT solution or close to optimal
- Almost always 2-approx (always for "random" polygons)
- More recent: Sophisticated methods based on LP/IP, and understanding of combinatorial structure Extensive experiments, achieving optimal solutions
[Sandor Fekete et al; Cid de Souza et al]
www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery/AGPPG [Hengeveld,Miltzow SoCG'21]: practical methods, vision stability δ

[AMP]

(a)

(d)

(b)

(e)

(c)

(f)
[AMP]

(g)

(j)

(h)

(k)

(i)

(1)
[AMP]

Complexity of Computing Guards

- NP-hard, even in simple polygons, terrains
- APX-hard in simple polygons
- Need for irrational guards[Miltzow,Adamaszek,Abrahamsen,SoCG’17]
- $\exists \mathbb{R}$-complete (unlikely in NP)
[Miltzow,Adamaszek,Abrahamsen,JACM'21]

Approximation Algorithms

Approximation algorithms for discrete candidate sets (vertex guards, grid-point guards, etc):
-O(log n)-approx: set cover (greedy)
[G87]
-O($\log \mathrm{g}^{*}$)-approx: reweighting ([Cl,BG]) [EH03,GLO1]
-O(loglog $\left.\mathrm{g}^{*}\right)$:
[KK11]
-O(1)-approx in special cases:
1.5D terrains (O(1), PTAS) [BKM05,K06,EKMMS08,GKKV14]

Monotone polygons [Ni05]
Triangle-free arrangements (3-approx)
-PTAS:
Bounded depth, bounded vision disks [AKMY12]
Robust (one model) guarding
Pseudo-poly O(log g*)-approx (poly in spread, n) [DKDS07]
Point guards (any, but integer coords,nondeg P): O(log g*)-approx [Bonnet,Miltzow,SoCG17] (correcting [DKDS07])
Exact poly-time solutions:
-Rectangle visibility in rectilinear polygons [WK06]
-Partitioning P into min \# star-shaped pieces [Ke85] (diagonals)
-Min-length watchman tour (mobile guard)
[CN86,...]

Notions of Robust Guarding

- k-guarding
- [Busto,Evans,Kirkpatrick'13] O(k loglog g*)-approx in simple polygons (use (ε, k)-nets)
- Angle-constrained 2-guarding
- Triangle guards
- (ε, R)-guards
- Universal guards
- Polygons with vision stability δ [Hengeveld,Miltzow, SoCG'21]
- α-robust guards [Das,Filtser,Katz,M, 2023]

Angle-Constrained 2-Guarding

 [Efrat, Har-Peled, M]Goal: See all of a region Q very "well"

$p \in Q$ is 2-guarded at angle α by G :

Main Idea

[Efrat, Har-Peled, M]
Follow a Clarkson/Brönnimann-Goodrich approach:

- Distribute weights on candidate guard locations (grid Γ, implicitly maintained)
- Each main iteration: Select a subset of candidates using the weight distribution
(larger weight implies more likely to select)
- If we ever satisfy the covering criterion, DONE
- Else, pick a $q \in Q$ not yet "covered", increase weights of candidates that see q, REPEAT

Angle-Constrained 2-Guard Cover

[Efrat, Har-Peled, M]
Two phases:

- Find G_{1} - approx min 1-guard cover of Q
- Find G_{2} such that $G_{1} \cup G_{2}$ 2-guards Q at angle $\alpha / 2$

LEM: Let G^{*} be a set of k^{*} sensors that 2-guard Q at angle α. Let G_{1} 1 -guard Q. Then, for any point $p \in Q$ there exist sensors $g_{1} \in G_{1}$ and $g_{2} \in G^{*}$ that 2-guard p at angle $\alpha / 2$.
Apply Clarkson/Brönnimann-Goodrich approach:
THM: Given P, Q, grid Γ, we can find sensors $G \subset P$ that 2-guard Q at angle $\alpha / 2$, and $|G|=O\left(k^{*} \log k^{*}\right)$, where k^{*} is the cardinality of smallest set of vertices of Γ that 2 -guard Q at angle α.
The running time is $O\left(n k^{* 4} \log ^{2} n \log m\right)$, where $m=\#$ vertices of $\Gamma \cap P$.

Triangle Guarding

[Efrat, Har-Peled, M]

NP-hard

Triangle Guarding

- Method: Find a min-link cycle surrounding Q, and place guards at these vertices
- Analysis: OPT can be converted to a set of $3|O P T|$ points outside of Q, within P, such that the V^{p-Q} of these points is connected, and Q lies within a face of the arrangement

Thm: Complexity of face is O(OPT log OPT), since O(OPT) vertices in this arrangement. [AHKMN, DCG]

- Result: O(log OPT)-approx

$(\varepsilon, \mathrm{R})$-Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of guards, could we know with confidence the domain is really guarded?

Guards may not be placed exactly. (Human guards don't usually stand exactly still, and cameras/sensors cannot be placed perfectly.)

Model: When a guard is placed at p, it will actually reside at some point within a disk, $B_{\varepsilon}(p)$, of radius ε

In order for q to be "seen" by guard p, it must be able to see the guard no matter where it is within the disk $B_{\varepsilon}(p)$

Bounded radius, R, of vision

Robust Guards: Approximation

Theorem: There is a PTAS for computing a min \# of robust, radiusbounded guards in a polygonal domain (with holes), assuming R / ε is bounded, and a poly-size set G of candidate guard locations is given.

One option for G : use a set L of $\mathrm{O}\left(\lambda \log ^{2} \lambda\right)$ landmarks, as in [AEG08], and then guarantee at least $\left(1-\varepsilon_{1}\right)$-fraction of the area is seen.

$$
\lambda=\left(\mathrm{g}_{\text {opt }} / \varepsilon_{1}\right) \log \mathrm{h} \quad(\mathrm{~h}=\# \text { holes })
$$

[AEG08] also give randomized greedy algorithm that, whp, computes $\mathrm{O}\left(\mathrm{g}_{\mathrm{L}} \log \lambda\right)$ guards to cover L, where $g_{L} \leq g_{\text {opt }}$ is opt \# of guards to cover L

Method: m-guillotine optimization: Convert any OPT to an m-guillotine version; apply DP to optimize

What is Needed for PTAS to Apply

Suffices: Visible regions, $\operatorname{VP}(\mathrm{g})$, from candidate guard locations $\mathrm{g} \in \mathrm{G}$ have area $(\mathrm{VP}(\mathrm{g})) \geq \mathrm{c} \operatorname{diam}^{2}(\mathrm{VP}(\mathrm{g}))$, for some c . (e.g., each $\mathrm{VP}(\mathrm{g})$ contains a disk of radius Ω (diam(VP(g)))

Special Case: Bounded radius visibility in polyominoes

Another Sufficient Model:

Sample points S in P. Guards placed at subset of S.
 Guards must see all of S: Problem is Dominating Set in VG(S)

If samples S are δ-well dispersed (e.g., no disk of radius δ has more than $\mathrm{O}(1)$ samples of S), and guards have visibility radius R, with R / δ bounded, then PTAS also applies

Minimum Dominating Set:

best approx in general is log-approx PTAS for planar graphs, UDG APX-complete for degree- $B, B \geq 3$

Here, the graph $\mathrm{VG}(\mathrm{S})$ is not planar, not UDG, but has bounded degree, depending on R / δ

Guarding "Fat Vision" Polygons

[Das,Filtser,Katz,M, 2023]

- If P has the property that for every point p in P the polygon $V P(p)$ is α-fat, we say P is "fat vision"
- Theorem: For fat vision P (even with holes), we can compute a set Q of $\mathrm{O}\left(\mathrm{n}^{2}\right)$ points such that Q contains a guard set of size O(OPT).

Dependence on α : $|Q|=O\left(\alpha^{-1} n^{2}\right)$, approx factor $O\left(\alpha^{-1}\right)$

- Theorem: For fat vision P (even with holes), there is an $\mathrm{O}\left(\alpha^{-3}\right)$-approximation algorithm, poly(n).

P is fat vision
P is not fat
P is fat
P is not fat vision

Robust Vision Guarding

[Rathish Das, Omrit Filtser, Matya Katz, JM, 2023]
Point g is said to α-robustly see point p iff p is seen by a guard that is anywhere inside the disk $D(g, \alpha|g p|)$

Note that many guards may be needed to α-robustly guard a skinny polygon:

What does g see α-robustly?

$\mathrm{Vis}_{\alpha}(\mathrm{g})$ is $\mathrm{O}(\alpha)$-fat, and can be computed efficiently

Method/Results

- Compute a carefully crafted discrete set Q of candidate guards
Theorem 3. The set $Q=M \cup \bigcup_{v \in M} Q_{v}$ contains a set of $O\left(\alpha^{-4}\right)\left|O P T_{\alpha}\right|$ points that $\alpha / 4$-robustly guard P.

In addition, we claim that the size of Q is linear in $n=|P|$ and $\left|O P T_{\alpha}\right|$.

- Apply a greedy algorithm and prove:

Theorem 4. Given a polygon P with n vertices, one can compute in $\operatorname{poly}\left(n,\left|O P T_{\alpha}\right|\right)$ time a set of $O\left(\alpha^{-6}\right)\left|O P T_{\alpha}\right|$ points that $\alpha / 8$-robustly guard P, where $O P T_{\alpha}$ is a minimum-cardinality set of guards that α-robustly guard P.

Time is polynomial in (input,output)

More General Definition

$D(p, \alpha\|p-g\|)$

Definition 6.1. Given a polygon P and parameters $0<\beta_{\text {guard }}, \beta_{\text {point }}, \alpha \leq 1$, we say that a point $g \in P\left(\beta_{\text {guard }}, \beta_{\text {point }}, \alpha\right)$-robustly guard another point $p \in P$ if $\overline{g p} \in P$, and

1. the area of $\operatorname{Vis}(p) \cap D(g, \alpha \cdot\|p-g\|)$ is at least $\beta_{\text {guard }} \cdot \pi(\alpha \cdot\|p-q\|)^{2}$, and
2. the area of $\operatorname{Vis}(g) \cap D(p, \alpha \cdot\|p-g\|)$ is at least $\beta_{\text {point }} \cdot \pi(\alpha \cdot\|p-g\|)^{2}$

Theorem 7. If Vis $s_{(1 / 6,0)}^{\alpha}(g)$ can be computed in polynomial time, then a set of $O\left(\alpha^{-3}\right)\left|O P T_{\alpha}\right|$ points that $(1 / 6,0, \alpha / 2)$-robustly guard P can be computed in polynomial time.

Maximum Independent Set (MIS)

Best known polytime approx factor: $\mathrm{O}\left(\mathrm{n} / \log ^{2} \mathrm{n}\right.$) [Boppana-Halldórsson] No polytime algorithm with approx $\mathrm{n}^{1-\delta}$ for $\delta>0$, unless $\mathrm{P}=\mathrm{NP}$ [Zuckerman] PTAS in planar graphs

Can Geometry Help?

A Basic Geometry Problem

Maximum Independent Set (MIS): Given a set S of bodies in the plane.
Find a max-cardinality subset, S^{*}, that is pairwise-disjoint.

MIS=Most Efficient Social Distancing
 Figure 5 - Lecture Hall Social Distancing Mock-Up

Approximations

- Disks, fat regions: PTAS (1- ε)-approx in $n^{o\left(1 / \varepsilon^{d-1}\right)}$

Also: PTAS for pseudodisks [Chan, Har-Peled]

- Rectangles: MISR
- QPTAS Rectangles are neither fat nor pseudodisks!
- $\mathrm{n}^{\text {poly }((\log \mathrm{n}) / \varepsilon)}$ [Adamaszek, Har-Peled, and Wiese]
- $\mathrm{n}^{\mathrm{O}\left(((\log \log \mathrm{n}) / \varepsilon)^{4}\right)}$ [Chuzhoy and Ene]
- PTAS for "long" rectangles [Adamaszek, Har-Peled, and Wiese]
- Polytime: O(loglog n)-approx [Chalermsook, Chuzhoy]
- Parameterized Approximation Scheme: [Grandoni,Kratsch,Wiese,2019]

For any k, ε, in time $f(k, \varepsilon) n^{g(\varepsilon)}$ either gives indep subset of $\geq k /(1+\varepsilon)$, or declares OPT<k

- Here: O(1)-Approx in polytime

MISR: One Approach

- Show that any set of disjoint rectangles (e.g., the rectangles of OPT) has a constant fraction subset that has a perfect BSP (or "guillotine separable")

Then apply DP to rectangular "subproblems"

No "free" guillotine cut

Subset (3/4) has perfect BSP

Conjecture 1. For any set of n interior-disjoint axis-aligned rectangles in the plane, there exists a subset of size $\Omega(n)$ that has a perfect orthogonal BSP.

Pach-Tardos Conjecture

Main Ideas

- Use more general cuts to get $\mathrm{O}(1)$ complexity pieces - one class "CCRs"

- Use K-ary cutting instead of just binary k ≤ 3

- Charging scheme to prove a structural theorem: Can afford to discard a constant fraction of input rectangles, to enable a "nearly perfect CCR-partition"
- DP to optimize

Maximal Rectangles

- Transform any set I of k disjoint rectangles into a set I^{\prime} of maximal disjoint rectangles

Will show that I' has a constantfraction subset for which there is a "nearly perfect CCR-partition" wrt the subset

Nesting Among Maximal Rectangles

Def: A rectangle R is nesting to its left/right/top/bottom if its corresponding side is contained in the interior of an abutting rectangle's side (or the side of the BB, B)

Example:

R_{1} is horiz nested (red)
R_{2} is vert nested (blue)
R_{3} is not nested in any direction

Why Maximality Is Useful

Observation 1. For a set I^{\prime} of independent rectangles that are maximal within $B B(\mathcal{R})$, a rectangle $R_{i}^{\prime} \in I^{\prime}$ cannot be nested both vertically and horizontally.

Note that the claim is not true without maximality:

Why Nesting Concept Is Useful

If R is not nested on at least one side, there is hope to be able to "charge" R to a corner, c, when a cut segment crosses R

CCR-Partitions

- Recursive partitioning of the BB, B, of input
- Each face Q is a CCR
- A cut, consisting of $O(1)$ hor/vert segments partitions Q into at most 3 subfaces (CCRs)
- A CCR-partition is perfect wrt input rectangles if no rectangle is penetrated by a cut segment, each leaf face has exactly 1 input rectangle
- Nearly perfect CCR-partition: each cut segment penetrates at most 2 input rectangles, each leaf face has ≤ 1 input rectangle

Nearly Perfect CCR Partition

The Structure Theorem

Theorem 3.1. For any set $I=\left\{R_{1}, \ldots, R_{k}\right\}$ of k interior disjoint (axis-aligned) rectangles in the plane within a bounding box B, there exists a K-ary CCR-partition of the bounding box B, with $K \leq 3$, recursively cutting B into rectangles and (L-shaped) corner-clipped rectangles (CCRs), such that the CCR-partition is nearly perfect with respect to a subset of I of size $\Omega(k)$.

The Algorithm: DP Subproblem

Subproblem $\mathrm{S}=\left(\mathrm{Q}, \mathrm{I}_{\mathrm{s}}\right)$, where I_{S} is a set of "special" (specified) rectangles, at most 2 per vertical side of the CCR face Q .

Dynamic Program

- Optimize over K-ary cuts ($\mathrm{K} \leq 3$) for a CCR subproblem, S, to compute $f(S)$, the max cardinality of an indep subset of input rectangles for which there is a nearly perfect CCR-partition

$$
f(\mathcal{S})= \begin{cases}0 & \text { if } \mathcal{R}(\mathcal{S})=\emptyset, \\ \max _{\chi \in \gamma(\mathcal{S}), I_{\chi}}\left(f\left(\mathcal{S}_{1}\right)+\cdots+f\left(\mathcal{S}_{K}\right)+\left|I_{\chi}\right|\right) & \text { otherwise },\end{cases}
$$

Here, I_{χ} is the set of rectangles (at most 2 per vertical segment of χ) that are penetrated by vertical cut segments and become special rectangles specified for the new subproblems, and $\gamma(\mathcal{S})$ is the set of all eligible K-ary CCR-cuts

Better Factors

- Original factor (Jan, 2021): 10
- Here: 4 [FOCS'21]
- Small variant: Offload charge on R_{r} if both left corners charged (cases (5),(6)), by examining its top-left neighbor: Get factor 10/3

Now: fence may penetrate 2 rectangles instead of 1 Still get $O(1)$ complexity subproblems

- Continuing: 22/7,....., (3+ ε)
- Further improvements:
- Factor 3 [SODA'22], $(2+\varepsilon)$ [Galvez,Khan,Mari,Momke,Reddy,Wiese]

Combining Coverage, Routing

- Optimal routing problems:
- Optimal routes/networks to visit regions
- Optimization of routes for vision/coverage
- Aspects of particular interest:
- Uncertainty, robustness of solutions
- Handling time constraints
- Motivating applications:
- Robotics
- Sensor networks
- Vehicle routing, logistics

Cooperative Heterogeneous Vehicle Mission Planning

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic battlefield

- Vehicles: various classes (ground, air, sea), speeds, capacities, capabilities
- Targets: points, regions; mission task times; precedence constraints
- Constraints: domains of operation; tethers (distance); rendezvous requirements, formations
- Tactical vs strategic; online vs offline

Missions for Agents, UAVs

Types of mission tasks:

- Visit target site (point) p
- Visit (any point) of target region R
- Possible constraint: Mission time (minimum) within R
[Jia, Mitchell, 2019: TSPN with time lower bounds. PTAS, dual approximation algorithms]
- View a target (point/region) T: visit any point that is visible to T "watchman route problem"
- Sweep a target region (recon, search), W

Covering Tours

- Cover a point set S

Just geometric TSP

Covering Tours

- Cover a set of disks

TSP with (circular) neighborhoods

Sensor Network Application: Cover Tour Problem

Alt, Arkin, Bronnimann, Erickson, Fekete, Knauer, Lenchner, M, Whittlesey, SoCG’06

Lawnmower/Milling Problem

[AFM]

Best method of mowing the lawn?

TSPN: Visit the disk centered at each blade of grass

Lecture Notes in Computer Science
M. Held

On the Computational
Geometry of
Pocket Machining

Springer-Verlag

Pocket Machining

[Martin Held]

Watchman Route Problem

- Cover set of all visibility polygons

Subject to: stay

Watchman Route Problem (WRP)

Watchman Route Problem

- SoCG 1986: Chin and Ntafos
- NP-hardness in 2D,3D;

Revisited:[Dumitrescu, Toth 2012]

- O(n) in rectilinear, simple polygons
- WRP in simple polygons: polytime
- Long history...Current fastest: $O\left(n^{3} \log n\right)$ for anchored, $O\left(n^{4} \log n\right)$ for floating

WRP Approximation

- Simple polygons:
- Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004]
- $14(\pi+4)=99.98$-approx, $O(n \log n)$, for floating [Carlsson, Jonsson, Nilsson, TR 1997]
- 2-approx, O(n), for floating [Tan, TCS 2007]
- 4-approx, O(n²), for min-link [Alsuwaiyel, Lee, IPL 1995]
- Polygons with holes? SODA13: O($\left.\log ^{2} n\right), \Omega(\log n)$
- O(log n)-approx, rectilinear, rectangle-visibility
- WRP in 3D: No constant-factor, unless P=NP
[Safra, Schwartz 2003]
$\Omega(\log n)$, even for terrains

General Case: WRP in Polygonal Domain (2D) [m, SoDA13]

- Theorem: The WRP has an $O\left(\log ^{2} n\right)$ approximation algorithm.
- Also: WRP has an O(log n)-approx in domain P satisfying the bounded perimeter assumption (BPA): perim $(V P(p))=O(\operatorname{diam}(V P(p))$, for p in P

e.g., bounded degree corridor domains

Main Ideas

- Localization: Consider a polynomial \# of "minimal outer-illuminating squares" (MOIS), B, that OPT passes near/through
- Discretization: Show that the continuous problem can be discretized, using an appropriate grid

Main Ideas

- Solve 2 separate problems:
- OWRP: Outer WRP: Find a short tour γ within P that sees all of P outside the tour.
- Discrete-OWRP: exact DP algorithm - OWRP: PTAS

- IWRP: Inner WRP: For a given simple closed curve, γ, within P, augment γ (if needed) into a short network that sees all of γ P that is inside γ.
- $O\left(\log ^{2} n\right.$)-approx

Combine

Budgeted Watchman Route Problem

Orienteering Watchman

- BWRP: See as much as possible (e.g., area) on a route of length at most L
Special case: L=O: Find a point guard to see as much as possible [CEH, DCG'O7]
- QWRP: Quota WRP: See area at least A using shortest route possible

[ongoing work with Kien Huynh, Linh Nguyen, Valentin Polishchuk]

Hardness of BWRP

From KNAPSACK
Hardness also of QWRP, from INVERSE-KNAPSACK

Approximation Algorithms

- Method for simple polygon P:
- Localization of OPT (or possible depot, s)
- Discretization (round to appropriate grid)
- Dynamic programming
- BWRP: An FPTAS, poly $(n, 1 / \varepsilon)$, to compute a tour seeing area $\geq(1-\varepsilon)^{\star} O P T_{L}$, using length $\leq(1+\varepsilon) L \quad$ "floating", convex, no s: $n 0\left(\frac{1}{4}\right)$
- QWRP: An FPTAS, poly $(n, 1 / \varepsilon)$, to compute a tour seeing area $\geq(1-\varepsilon)^{\star} A$, using length $\leq(1+\varepsilon)^{\star}$ OPT

Polygons with Holes

Theorem 5.1. The BWRP in a polygon with holes cannot be approximated, in polynomial time, to a factor of $(1-\varepsilon)$ for arbitrary $\varepsilon>0$, unless $P=N P$.

From Max-k-Vertex-Cover in cubic graphs

Theorem 5.3. Given a polygon P with holes, the $B W R P$ has a dual approximation algorithm that computes a tour of length at most $(1+\varepsilon) L$ that sees at least $\Omega\left(\frac{O P T \log \beta}{\log O P T}\right)$ with running time $\left(\frac{n}{\varepsilon} \log L\right)^{O\left(\beta \log \frac{n}{\varepsilon} / \log \beta\right)}$.

For any $\beta \leq 2$

Practical Methods

Sweeping with a bounded radius disk

[thesis, Dominik Krupke, 2022; Fekete+Krupke, ALENEX'19]

More Sweeping

- Sweeping with chains of visible agents, to "clean" a polygon with mobile evader
[Efrat,Guibas,Har-Peled,Mitchell,Murali DCG]

- Sweeping with a pair of agents/segment [Kien Huynh, JM, Val Polishchuk]

Sweeping with 2 Covisible Guards

[Kien Huynh, JM, Valentin Polishchuk, 2023]

- NP-hard, even in a simple, orthogonal polygon
- O(1)-approx
- Simple polygons
- Polygons with holes

