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Dynamic Connectivity



Determining connectivity in a graph is easy!           
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Determining connectivity in a graph is easy!           
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Update: Insert edge {C,D}              
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Update: Delete edge {E,F}              
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QUERY(D,F): Are D and F?
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How to avoid O(m) cost of recomputing 
spanning forest with each update or running 
O(m) search for each query?

Challenge: 

n=number of nodes, m=number of edges



1960’s and 70’s

• Edge insertions only
• Union-Find data structure and 
• Tarjan’s α(m,n) amortized analysis



Deletions are much harder



Techniques rely on
maintaining a 

spanning forest



When a tree edge is deleted…
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How can we find a replacement edge?



A brief* history 
Partially dynamic

•1960’s: Union-find insertions only  (amortized) Tarjan’s analysis (1975)

•1981: Deletions-only (amortized) O(mn) Even-Shiloach ;
•improved to O(m + n polylog) (Monte Carlo) Aamand et al (2023)

Fully Dynamic 

•1983  O(√m) topology trees  Fredrickson

•1992,7: O(√n) sparsification Eppstein, Galil, Italiano, Nissenzweig

•1995,8:  O(log2 n)  amortized
•(Las Vegas) Henzinger,K (1995) as improved by Henzinger, Thorup (1997)
•(deterministic) Holm, de Lichtenberg, Thorup [HDT] (1998), improved  by Thorup; 
Huang, et al. to O(log n (log log n)2) (higher query time) (2022)

•2013: polylog worst case Monte Carlo Kapron, K, Mountjoy [KKM]; 
•improved by Gibb, et al;  Wang (2015).

•2017: no(1) worst case  Las Vegas Nanongkai, Saranurak, Wullff-Nilson

•2020: no(1)  worst case  deterministic  Chuzhoy, et al



In a variety of models

•Sequential
•Streaming
•Distributed 
• CONGEST, local, MPC
• Synchronous/Asynchronous

•Parallel and Batch Parallel 



Leading to  related questions...

•Dynamic minimum spanning tree

•Dynamic tree data structures
ET trees (1995)  Henzinger, K

• Shortest paths, transitive closure (directed, 
weighted, all pairs and single source)

• Lower bounds  in the cell probe model, streaming 
and distributed, using communication and 
information theory, conditional lower bounds

•Maintaining expander graph  decompositions

•Distributed broadcast with sublinear communication



Talk Outline

•Review of some important ideas
•ET Tree and batch parallel implementation of the 

Monte Carlo [KKM+] method
•Application of the XOR method to distributed 

networks



A Simple problem , but lots of interesting 
ideas….

1. Union find 
2. Even-Shiloach-Smaller components, breathfirst 

search tree
3. Hierarchical clustering (topology trees) 
4. Sparsification
5. Randomized dynamic decomposition
6. Deterministic dynamic decomposition
7. ET Trees
8. XOR Method



Idea 1: Union find—disjoint trees

• Create a node x for every node in graph and 
maintain a tree for each connected component

• find(x) returns root of tree containing x
• query (x,y): find(x)=find(y) iff x and y are connected
• Insert (x,y): if find(x)≠find(y), union(x,y) 
• union(x,y): union by weight-- find(x) becomes child 

of find(y) if tree containing x is smaller (union by 
weight)

• While going up to root, set all pointers in tree to 
root (path compression).



IDEA 2: Even Shiloach deletions only

A. Maintain breadth-first 
search tree

. 

Pick next “hook”  to higher level 
or drop a level and spend
O(deg) to reset list of hooks

For total cost O(m*depth) 

In Parallel: To delete {a,b}

a



IDEA 2: Even Shiloach deletions only

A. Maintain breadth-first 
tree

. 

Pick next “hook”  to higher level 
or drop a level and spend
O(deg) to reset list of hooks

For total cost O(m*depth) 

In Parallel: To delete {a,b}

a

Led to dynamic shortest path algs



IDEA 2: Even Shiloach deletions only

A. Maintain breadthfirst
tree

. 

Pick next hook on higher level or 
drop a level and spend
O(deg) to reset hooks

Total cost-O(m* depth)

B. See if deletion splits graph 
into two components

In Parallel: To delete {a,b}

a
a b

search
Until first search ends        search
cost~ # of edges in smaller
Each edge appears in ≤ lg m smaller 
components

Used for dynamic shortest path Used for dynamic decomposition 



Idea 3. Hierarchical clustering (via topology 
trees)

Change to degree 3 graph by adding nodes



3. Hierarchical Clustering

Form m 1/3 connected clusters of size m2/3



3. Hierarchical Clustering

Keep “external”  edges  betw each pair of connected clusters; 
Spanning tree inside cluster; spanning tree of clusters



2. Hierarchical Clustering

If deleted external edge: find new external edge.
Find replacement external tree edge if needed



2. Hierarchical Clustering

- m2/3 total edges inside each cluster
- m2/3  selected external  edges 



3. Hierarchical Clustering

Delete internal edgeà: check inside edges  first or split cluster. 
Merge with neighbor cluster if cluster is too small.



3. Hierarchical Clustering

Hierarchical decomposition, 30 pages laterà√m



3. Hierarchical Clustering

Gave rise to simpler hierarchical trees:
TOP trees, RC trees, parallel RC trees. 



Partition the edges
Determine spanning forest of each= sparse certificate

Idea 4 : Sparsification



Partition edges
Union of spanning forests contains spanning forest of union

Idea 4:  Sparsification



Idea 4. Sparsification

Parent graph = union of spanning forests of children

Update time= (log m/n )*(cost for m<2n )
Propagate up change
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Idea.4:  Sparsification

Parent = union of sparse certificates of children

Update time ~cost for graph of m<2n 

Propagate up change

C        B
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m/n

-->Only graphs of size 2n-2 ever need to be considered!



Idea 5: Sampling for dynamic decomposition   

When a tree edge is deleted, randomly sample 
nontree edges incident to the smaller component to 
find replacement edge



Else the cut is SPARSE
Check ALL the edges incident to the smallest component;
Move  edges in cutset down to a “lower level”.



Cost per level =cost of searching smaller components + sampling cost  



Start search for 
replacemt 

Each edge looked at log n  times per level  (from idea (2))
+ sampling cost.
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Each edge looked at log n  times per level  (from idea (2))
+ sampling cost.
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Insertions done here,
with periodic rebuilds  
of levels.



Look at each edge in smaller component until replacemt edge is 
found. 

IDEA 6: Deterministic dynamic decomposition (HDT)



Move edges  which were looked at which are NOT in the cutset 
to a lower level

Looked at before tree 
edge found

New tree edge



Each edge looked at no more than  log n  times.
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Insertions done here,



IDEA 7: “ET-TREES” 

Dynamic decomposition
introduces new, simple data 
structure  to support 
subtree queries, random 
sampling



IDEA 7: “ET-TREES” 



IDEA 7: “ET-TREES” 
stored in augmented balanced search tree

findroot, cut, link, update node value, sum of node values 

occurances



Batch parallel implementation of ET trees
Batch parallel insert, delete, query (2019-Tseng, Dhulipala, Blelloch)

Implemented as unrooted circular 
skip list  of directed edges 
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IDEA 7: “ET-TREES” 



Batch parallel implementation of HDT

Batch parallel insert, delete, query (2019- Acar, Anderson, et al. )

Implemented as unrooted circular 
skip list  of directed edges
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Idea 8: XOR method

Observe: Let T any subset  of V

If |cutset (V\T, T)|=1 then
Parity( Sum of degrees of nodes in T) =1



Given a dynamic forest of disjoint trees T in G
w/constant prob., find an edge in the cutset (T, V\T) 
for each T

Updates: insert edge, delete edge, make tree edge, 
make non-tree edge.

Find_edge(T)  returns an edge in E in the cutset of
(T, V\T)

Solves “CUTSET” PROBLEM
Idea 8: XOR method



To solve cutset problem: 

• Each edge (a,b) has unique binary name <ab> 
• For each node a, let 
• v(a)=bitwise XOR (names of edges incident to node a)

IF there is exactly one edge {a,b} in 
cutset of (T,V\T) then
XORa in T v(a) = <a,b>

(all other names cancel out)

Idea 8: XOR method



Example:
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Idea 8: XOR method



Sums at nodes: 010101=(2,5)
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Idea 8: XOR method



Idea 8: XOR method



Idea 8: XOR method



Idea 8: XOR method

Used to approximate cutset size



Solution to dynamic connectivity?? (not quite)

• Updates  must be oblivious to random bits

• Analysis assumes no dependence between tree 
structure and random  bits needed to find cutset
edge

Idea 8: XOR method



j=0

j=TOP 

tiers

• Boruvka type construction
O(log n) Cutset data structures c0, c1...ctop-1 on G with forests
V=F0 ⊆ F1 ... ⊆ Ftop

with their own randomness

Forest
Fj

spanning 
forest

Idea 8: XOR method



query(a,b): Return True iff in Ftop findroot(a) =findroot(b)

insert(a,b):
• insert edge {a,b} into cutset data structures c0, c1...ctop-1
• If query(a,b) =False, add {a,b} to F1 ... ⊆ Ftop by
• calling ci. make_tree_edge {a,b} for i=1 ... top

DEF: Let Ta denote tree in Fi containing node a
Ta is “unmatched” in Fi if Ta is no larger in  Fi+1

Idea 8: XOR method



Build spanning forest in tiers

Idea 8: XOR method



Build spanning forest in tiers

Idea 8: XOR method



Build spanning forest in tiers

Idea 8: XOR method



Build spanning forest in tiers

Idea 8: XOR method



Deletion:Deletion:

Idea 8: XOR method



Deletion: If unmatched comp.
find new edge 

Idea 8: XOR method



Deletion: If unmatched comp.
find new edge
can cause cycle

Idea 8: XOR method



Deletion: cycle edge is not a tree edge

Idea 8: XOR method



Deletion:
cycle -> unmatched comp on higher level, 
etc.

Idea 8: XOR method



delete(a,b)
for i=1,..., top delete (a,b) from ci
for a then b do

For  i=1,..., top if (a,b) in Fi
If Ta in Fi  is unmatched, (c,d) <-- ci .find edge(Ta)
If (c,d) causes a cycle in some T in Fj 

break cycle -- e’ <--path_edge* (c,d) in Fj \Fj-1
For k=j to top make_nontree edge(e’)
For k=i to top make_tree edge(c,d).

*path_edge is not an ET-tree operation
Can afford O(log2 ) time for its implementation w/no change to 
asymptotics

Can use link-cut trees, TOP trees, RC trees but these are harder to 
implement for arbitrary trees, especially in batch parallel model.

Idea 8: XOR method



Part 2: Batch parallel KKM+,   communication 
in distributed computing



TOOL BOX
• ET trees variant to enable simpler  path_edge
• Static parallel alg to compute 
• spanning forest (Gazit 1991)
• spanning forest (E/F) relative to pre-existing forest 
returns minimal subset of edges in E which link trees in F)

Batch parallel implementation of KKM (Cann, K 2023)



ET tree:   path_edge (a,b)
Given Ta , Tb   node disjoint trees in Fi and their corresponding 
intervals on the circle, path_edge(a,b) 
returns  edge {o, succ or pred(o)} where o is occurrence of node in Ta
closest to Tb  or vice versa. 
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An interval for a subtree may 
not be contiguous, but the 
intervals do not cross



ET tree:   path_edge (a,b)
Given Ta , Tb   node disjoint trees in Fi and their corresponding 
intervals on the circle, path_edge(a,b) 
returns  edge {o, succ or pred(o)} where o is the occurrence of a 
node in Ta closest to Tb  or vice versa. 
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Can binary search to find o



• Cutset data structure is easy to 
batch parallelize using batch 
parallel ET trees.
• O(log n) depth, O(log2 n) work 

to maintain O(log n) word 
vectors which can be updated 
independently.

Insert also easy to batch 
parallelize as
cutset data structures c0, 
c1...ctop-1 can be updated 
independently using 
batch parallel update values
Query uses batch parallel 
find trees

Batch parallel implementation of KKM



batchdelete (S) from all cutsets
for i=0 to top-1
Rj<I = replacement edges found in lower tiers Fj , j<i
1. Break cycles: C<--batch_path_edge(Rj<I ,Fi+1 \ Fi ); make non-tree edges(C) in 

Fi+1

2. make_tree_edge (Rj<I ) in Fi+1

3. Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \Fi+1 ), make tree edges (C’) in Fi+1

4. Find new replacement edges
R<- Batch Find(Tv ) for each v in V(S), Tv unmatched
R j<i+1 <--Rj<I ∪ Ri =Spanning_forest (R\Fi+1)
make_tree-edges(Ri ) in Fi+1

Batch parallel delete(S)



batchdelete (S) from all cutsets
for i=0 to top-1
Rj<I = replacement edges found in lower tiers Fj , j<i
1. Break cycles: C<--batch_path_edge(Rj<I ,Fi+1 \ Fi ); make non-tree edges(C) in 

Fi+1

2. make_tree_edge (Rj<I ) in Fi+1

3. Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \Fi+1 ), make tree edges (C’) in Fi+1

4. Find new replacement edges
R<- Batch Find(Tv ) for each v in V(S), Tv unmatched
R j<i+1 <--Rj<I ∪ Ri =Spanning_forest (R\Fi+1)
make_tree-edges(Ri ) in Fi+1

Batch parallel delete(S)

log n tree edges may change for each deleted edge->
k * log n* log2 n (log(1+n/k) work per deleted edge



Use of XOR method for asynchronous spanning tree 
construction with sublinear communication



Use of XOR method: Sublinear communication in  
distributed asynchronous network

Building a spanning tree in a distributed network,
where each node initially knows only its neighbors

Uses  more properties of find_edge;
• randomness of edge selected
• approximation of cutset



All nodes awake:
XOR method



Grow tree T from node 1 in phases:
Phase:
A. Expand T recursively:
• low degree nodes bring in their all neighbors 
• high degree nodes wait to hear from at least one special (w.h.p) 

and 
• Specials bring in all their neighbors.

XOR method



Then use find_edge

Phase (cont’d):
B. Find an outgoing edge to a high degree node  using find_tree
OR

C. WAIT until the low degree nodes  contact T 

XOR method



How do you WAIT?? (Step C) 

XOR method



Wait (Step C cont’d)

3.  For each edge in cut found, trigger leader with prob c lg n/K
4. If leader receives c’lg n triggers, repeat Step C over 
undiscovered edges in cut  (remove found edges from all samples)

XOR method



Conclusion and open problems

• Improvement  (polylog?) sequential worst case Las 
Vegas/Deterministic

• Improvement of sequential  worst case Monte Carlo 

or allow for  a nonoblivious adversary. 

O(log3 n) for insertions

O(log4 n) for deletions

• In a distributed network, how much communication/time needed for 
constructing a  tree of depth close to diameter of graph?

O(n3/2) for synchronous with depth O(D+n1/2) (Ghaffari,Kuhn 2018; Gimr, 
Pandurangan

O(n3/2) for asynchronous with depth n, time n3/2 (Mashreghi,K,2018)

m1+o(1) communication in time D1+o(1)  for asynchronous breadthfirst search tree 
(Awerbuch 1989)



Thank you!


