
Valerie King
University of Victoria
BC Canada

Dynamic Connectivity

Determining connectivity in a graph is easy!

F

C

D E
A

Determining connectivity in a graph is easy!

F

C

D EA

Update: Insert edge {C,D}

A
F

C

D E

Update: Delete edge {E,F}

A
F

C

D E

QUERY(D,F): Are D and F?

A
F

C

D E

How to avoid O(m) cost of recomputing
spanning forest with each update or running
O(m) search for each query?

Challenge:

n=number of nodes, m=number of edges

1960’s and 70’s

• Edge insertions only
• Union-Find data structure and
• Tarjan’s α(m,n) amortized analysis

Deletions are much harder

Techniques rely on
maintaining a

spanning forest

When a tree edge is deleted…

D

F

How can we find a replacement edge?

A brief* history
Partially dynamic

•1960’s: Union-find insertions only (amortized) Tarjan’s analysis (1975)

•1981: Deletions-only (amortized) O(mn) Even-Shiloach ;
•improved to O(m + n polylog) (Monte Carlo) Aamand et al (2023)

Fully Dynamic

•1983 O(√m) topology trees Fredrickson

•1992,7: O(√n) sparsification Eppstein, Galil, Italiano, Nissenzweig

•1995,8: O(log2 n) amortized
•(Las Vegas) Henzinger,K (1995) as improved by Henzinger, Thorup (1997)
•(deterministic) Holm, de Lichtenberg, Thorup [HDT] (1998), improved by Thorup;
Huang, et al. to O(log n (log log n)2) (higher query time) (2022)

•2013: polylog worst case Monte Carlo Kapron, K, Mountjoy [KKM];
•improved by Gibb, et al; Wang (2015).

•2017: no(1) worst case Las Vegas Nanongkai, Saranurak, Wullff-Nilson

•2020: no(1) worst case deterministic Chuzhoy, et al

In a variety of models

•Sequential
•Streaming
•Distributed
• CONGEST, local, MPC
• Synchronous/Asynchronous

•Parallel and Batch Parallel

Leading to related questions...

•Dynamic minimum spanning tree

•Dynamic tree data structures
ET trees (1995) Henzinger, K

• Shortest paths, transitive closure (directed,
weighted, all pairs and single source)

• Lower bounds in the cell probe model, streaming
and distributed, using communication and
information theory, conditional lower bounds

•Maintaining expander graph decompositions

•Distributed broadcast with sublinear communication

Talk Outline

•Review of some important ideas
•ET Tree and batch parallel implementation of the

Monte Carlo [KKM+] method
•Application of the XOR method to distributed

networks

A Simple problem , but lots of interesting
ideas….

1. Union find
2. Even-Shiloach-Smaller components, breathfirst

search tree
3. Hierarchical clustering (topology trees)
4. Sparsification
5. Randomized dynamic decomposition
6. Deterministic dynamic decomposition
7. ET Trees
8. XOR Method

Idea 1: Union find—disjoint trees

• Create a node x for every node in graph and
maintain a tree for each connected component

• find(x) returns root of tree containing x
• query (x,y): find(x)=find(y) iff x and y are connected
• Insert (x,y): if find(x)≠find(y), union(x,y)
• union(x,y): union by weight-- find(x) becomes child

of find(y) if tree containing x is smaller (union by
weight)

• While going up to root, set all pointers in tree to
root (path compression).

IDEA 2: Even Shiloach deletions only

A. Maintain breadth-first
search tree

.

Pick next “hook” to higher level
or drop a level and spend
O(deg) to reset list of hooks

For total cost O(m*depth)

In Parallel: To delete {a,b}

a

IDEA 2: Even Shiloach deletions only

A. Maintain breadth-first
tree

.

Pick next “hook” to higher level
or drop a level and spend
O(deg) to reset list of hooks

For total cost O(m*depth)

In Parallel: To delete {a,b}

a

Led to dynamic shortest path algs

IDEA 2: Even Shiloach deletions only

A. Maintain breadthfirst
tree

.

Pick next hook on higher level or
drop a level and spend
O(deg) to reset hooks

Total cost-O(m* depth)

B. See if deletion splits graph
into two components

In Parallel: To delete {a,b}

a
a b

search
Until first search ends search
cost~ # of edges in smaller
Each edge appears in ≤ lg m smaller
components

Used for dynamic shortest path Used for dynamic decomposition

Idea 3. Hierarchical clustering (via topology
trees)

Change to degree 3 graph by adding nodes

3. Hierarchical Clustering

Form m 1/3 connected clusters of size m2/3

3. Hierarchical Clustering

Keep “external” edges betw each pair of connected clusters;
Spanning tree inside cluster; spanning tree of clusters

2. Hierarchical Clustering

If deleted external edge: find new external edge.
Find replacement external tree edge if needed

2. Hierarchical Clustering

- m2/3 total edges inside each cluster
- m2/3 selected external edges

3. Hierarchical Clustering

Delete internal edgeà: check inside edges first or split cluster.
Merge with neighbor cluster if cluster is too small.

3. Hierarchical Clustering

Hierarchical decomposition, 30 pages laterà√m

3. Hierarchical Clustering

Gave rise to simpler hierarchical trees:
TOP trees, RC trees, parallel RC trees.

Partition the edges
Determine spanning forest of each= sparse certificate

Idea 4 : Sparsification

Partition edges
Union of spanning forests contains spanning forest of union

Idea 4: Sparsification

Idea 4. Sparsification

Parent graph = union of spanning forests of children

Update time= (log m/n)*(cost for m<2n)
Propagate up change

A

m/n

Idea.4: Sparsification

Parent = union of sparse certificates of children

Update time ~cost for graph of m<2n

Propagate up change

C B
A

m/n

-->Only graphs of size 2n-2 ever need to be considered!

Idea 5: Sampling for dynamic decomposition

When a tree edge is deleted, randomly sample
nontree edges incident to the smaller component to
find replacement edge

Else the cut is SPARSE
Check ALL the edges incident to the smallest component;
Move edges in cutset down to a “lower level”.

Cost per level =cost of searching smaller components + sampling cost

Start search for
replacemt

Each edge looked at log n times per level (from idea (2))
+ sampling cost.

F
e
w
e
r

e
d
g
e
s

Log n levels

Each edge looked at log n times per level (from idea (2))
+ sampling cost.

F
e
w
e
r

e
d
g
e
s

Log n levels

Insertions done here,
with periodic rebuilds
of levels.

Look at each edge in smaller component until replacemt edge is
found.

IDEA 6: Deterministic dynamic decomposition (HDT)

Move edges which were looked at which are NOT in the cutset
to a lower level

Looked at before tree
edge found

New tree edge

Each edge looked at no more than log n times.

S
m
a
l
l
e
r

c
o
m
p
s

Log n

Insertions done here,

IDEA 7: “ET-TREES”

Dynamic decomposition
introduces new, simple data
structure to support
subtree queries, random
sampling

IDEA 7: “ET-TREES”

IDEA 7: “ET-TREES”
stored in augmented balanced search tree

findroot, cut, link, update node value, sum of node values

occurances

Batch parallel implementation of ET trees
Batch parallel insert, delete, query (2019-Tseng, Dhulipala, Blelloch)

Implemented as unrooted circular
skip list of directed edges

G
B

B
G F

B
B
F

D
C

R
R
B

B B
C C

D

C
E

E
C

C
B

,,
R
A
A

B
R

A
R

O(k log (1+n/k)) exp work,
O(log n) depth w.h.p.

IDEA 7: “ET-TREES”

Batch parallel implementation of HDT

Batch parallel insert, delete, query (2019- Acar, Anderson, et al.)

Implemented as unrooted circular
skip list of directed edges

G
B

B
G F

B
B
F

D
C

R
R
B

B B
C C

D

C
E

E
C

C
B

,,
R
A
A

B
R

A
R

O(k log n log (1+n/k)) exp
amortized work
O(log3 n) update depth w.h.p.

Idea 8: XOR method

Observe: Let T any subset of V

If |cutset (V\T, T)|=1 then
Parity(Sum of degrees of nodes in T) =1

Given a dynamic forest of disjoint trees T in G
w/constant prob., find an edge in the cutset (T, V\T)
for each T

Updates: insert edge, delete edge, make tree edge,
make non-tree edge.

Find_edge(T) returns an edge in E in the cutset of
(T, V\T)

Solves “CUTSET” PROBLEM
Idea 8: XOR method

To solve cutset problem:

• Each edge (a,b) has unique binary name <ab>
• For each node a, let
• v(a)=bitwise XOR (names of edges incident to node a)

IF there is exactly one edge {a,b} in
cutset of (T,V\T) then
XORa in T v(a) = <a,b>

(all other names cancel out)

Idea 8: XOR method

Example:

6

3
4

5

1 2

1

011100

011110
100101

010101

Idea 8: XOR method

Sums at nodes: 010101=(2,5)

6

3
4

5

1 2

1

011100

011110
100101

010101

000010

011110 11000

111001

Idea 8: XOR method

Idea 8: XOR method

Idea 8: XOR method

Idea 8: XOR method

Used to approximate cutset size

Solution to dynamic connectivity?? (not quite)

• Updates must be oblivious to random bits

• Analysis assumes no dependence between tree
structure and random bits needed to find cutset
edge

Idea 8: XOR method

j=0

j=TOP

tiers

• Boruvka type construction
O(log n) Cutset data structures c0, c1...ctop-1 on G with forests
V=F0 ⊆ F1 ... ⊆ Ftop

with their own randomness

Forest
Fj

spanning
forest

Idea 8: XOR method

query(a,b): Return True iff in Ftop findroot(a) =findroot(b)

insert(a,b):
• insert edge {a,b} into cutset data structures c0, c1...ctop-1
• If query(a,b) =False, add {a,b} to F1 ... ⊆ Ftop by
• calling ci. make_tree_edge {a,b} for i=1 ... top

DEF: Let Ta denote tree in Fi containing node a
Ta is “unmatched” in Fi if Ta is no larger in Fi+1

Idea 8: XOR method

Build spanning forest in tiers

Idea 8: XOR method

Build spanning forest in tiers

Idea 8: XOR method

Build spanning forest in tiers

Idea 8: XOR method

Build spanning forest in tiers

Idea 8: XOR method

Deletion:Deletion:

Idea 8: XOR method

Deletion: If unmatched comp.
find new edge

Idea 8: XOR method

Deletion: If unmatched comp.
find new edge
can cause cycle

Idea 8: XOR method

Deletion: cycle edge is not a tree edge

Idea 8: XOR method

Deletion:
cycle -> unmatched comp on higher level,
etc.

Idea 8: XOR method

delete(a,b)
for i=1,..., top delete (a,b) from ci
for a then b do

For i=1,..., top if (a,b) in Fi
If Ta in Fi is unmatched, (c,d) <-- ci .find edge(Ta)
If (c,d) causes a cycle in some T in Fj

break cycle -- e’ <--path_edge* (c,d) in Fj \Fj-1
For k=j to top make_nontree edge(e’)
For k=i to top make_tree edge(c,d).

*path_edge is not an ET-tree operation
Can afford O(log2) time for its implementation w/no change to
asymptotics

Can use link-cut trees, TOP trees, RC trees but these are harder to
implement for arbitrary trees, especially in batch parallel model.

Idea 8: XOR method

Part 2: Batch parallel KKM+, communication
in distributed computing

TOOL BOX
• ET trees variant to enable simpler path_edge
• Static parallel alg to compute
• spanning forest (Gazit 1991)
• spanning forest (E/F) relative to pre-existing forest
returns minimal subset of edges in E which link trees in F)

Batch parallel implementation of KKM (Cann, K 2023)

ET tree: path_edge (a,b)
Given Ta , Tb node disjoint trees in Fi and their corresponding
intervals on the circle, path_edge(a,b)
returns edge {o, succ or pred(o)} where o is occurrence of node in Ta
closest to Tb or vice versa.

M

I G
B

B
G F

B
B
F

D
C

R
R
B

B B
C C

D

C
E

E
C

C
B

,,
R
A
A

B
R

A
R

TA

TE

An interval for a subtree may
not be contiguous, but the
intervals do not cross

ET tree: path_edge (a,b)
Given Ta , Tb node disjoint trees in Fi and their corresponding
intervals on the circle, path_edge(a,b)
returns edge {o, succ or pred(o)} where o is the occurrence of a
node in Ta closest to Tb or vice versa.

M

I G
B

B
G F

B
B
F

D
C

R
R
B

B B
C C

D

C
E

E
C

C
B

,,
R
A
A

B
R

A
R

TA

TE

Can binary search to find o

• Cutset data structure is easy to
batch parallelize using batch
parallel ET trees.
• O(log n) depth, O(log2 n) work

to maintain O(log n) word
vectors which can be updated
independently.

Insert also easy to batch
parallelize as
cutset data structures c0,
c1...ctop-1 can be updated
independently using
batch parallel update values
Query uses batch parallel
find trees

Batch parallel implementation of KKM

batchdelete (S) from all cutsets
for i=0 to top-1
Rj<I = replacement edges found in lower tiers Fj , j<i
1. Break cycles: C<--batch_path_edge(Rj<I ,Fi+1 \ Fi); make non-tree edges(C) in

Fi+1

2. make_tree_edge (Rj<I) in Fi+1

3. Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \Fi+1), make tree edges (C’) in Fi+1

4. Find new replacement edges
R<- Batch Find(Tv) for each v in V(S), Tv unmatched
R j<i+1 <--Rj<I ∪ Ri =Spanning_forest (R\Fi+1)
make_tree-edges(Ri) in Fi+1

Batch parallel delete(S)

batchdelete (S) from all cutsets
for i=0 to top-1
Rj<I = replacement edges found in lower tiers Fj , j<i
1. Break cycles: C<--batch_path_edge(Rj<I ,Fi+1 \ Fi); make non-tree edges(C) in

Fi+1

2. make_tree_edge (Rj<I) in Fi+1

3. Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \Fi+1), make tree edges (C’) in Fi+1

4. Find new replacement edges
R<- Batch Find(Tv) for each v in V(S), Tv unmatched
R j<i+1 <--Rj<I ∪ Ri =Spanning_forest (R\Fi+1)
make_tree-edges(Ri) in Fi+1

Batch parallel delete(S)

log n tree edges may change for each deleted edge->
k * log n* log2 n (log(1+n/k) work per deleted edge

Use of XOR method for asynchronous spanning tree
construction with sublinear communication

Use of XOR method: Sublinear communication in
distributed asynchronous network

Building a spanning tree in a distributed network,
where each node initially knows only its neighbors

Uses more properties of find_edge;
• randomness of edge selected
• approximation of cutset

All nodes awake:
XOR method

Grow tree T from node 1 in phases:
Phase:
A. Expand T recursively:
• low degree nodes bring in their all neighbors
• high degree nodes wait to hear from at least one special (w.h.p)

and
• Specials bring in all their neighbors.

XOR method

Then use find_edge

Phase (cont’d):
B. Find an outgoing edge to a high degree node using find_tree
OR

C. WAIT until the low degree nodes contact T

XOR method

How do you WAIT?? (Step C)

XOR method

Wait (Step C cont’d)

3. For each edge in cut found, trigger leader with prob c lg n/K
4. If leader receives c’lg n triggers, repeat Step C over
undiscovered edges in cut (remove found edges from all samples)

XOR method

Conclusion and open problems

• Improvement (polylog?) sequential worst case Las
Vegas/Deterministic

• Improvement of sequential worst case Monte Carlo

or allow for a nonoblivious adversary.

O(log3 n) for insertions

O(log4 n) for deletions

• In a distributed network, how much communication/time needed for
constructing a tree of depth close to diameter of graph?

O(n3/2) for synchronous with depth O(D+n1/2) (Ghaffari,Kuhn 2018; Gimr,
Pandurangan

O(n3/2) for asynchronous with depth n, time n3/2 (Mashreghi,K,2018)

m1+o(1) communication in time D1+o(1) for asynchronous breadthfirst search tree
(Awerbuch 1989)

Thank you!

