Dynamic Connectivity

Valerie King
University of Victoria
BC Canada

Determining connectivity in a graph is easy!

e
e @
/

\ >
<

Determining connectivity in a graph is easy!

ae
o—@

Update: Insert edge {C,D}

Update: Delete edge {E,F}

QUERY(D,F): Are D and F?

Challenge:

n=number of nodes, m=number of edges

How to avoid O(m) cost of recomputing
spanning forest with each update or running
O(m) search for each query?

1960’s and 70’s

 Edge insertions only
 Union-Find data structure and
* Tarjan’s a(m,n) amortized analysis

Deletions are much harder

ining a

iques rely on

ta

main
spanning

~Techn

forest

When a tree edge is deleted...

How can we find a replacement edge?

A brief* history

Partially dynamic

*1960’s: Union-find insertions only (amortized) Tarjan’s analysis (1975)

*1981: Deletions-only (amortized) O(mn) Even-Shiloach ;
simproved to O(m + n polylog) (Monte Carlo) Aamand et al (2023)

Fully Dvnamic

*1983 O(Vm) topology trees Fredrickson
*1992,7: O(Vn) sparsification Eppstein, Galil, Italiano, Nissenzweig

*1995,8: O(log?n) amortized
*(Las Vegas) Henzinger,K (1995) as improved by Henzinger, Thorup (1997)

*(deterministic) Holm, de Lichtenberg, Thorup [HDT] (1998), improved by Thorup;
Huang, et al. to O(log n (log log n)?) (higher query time) (2022)

*2013: polylog worst case Monte Carlo Kapron, K, Mountjoy [KKM];
simproved by Gibb, et al; Wang (2015).

*2017: n°M) worst case Las Vegas Nanongkai, Saranurak, Wullff-Nilson
*2020: n°Y) worst case deterministic Chuzhoy, et al

In a variety of models

* Sequential
* Streaming

e Distributed

* CONGEST, local, MPC
* Synchronous/Asynchronous

e Parallel and Batch Parallel

Leading to related questions...

* Dynamic minimum spanning tree

* Dynamic tree data structures
ET trees (1995) Henzinger, K

* Shortest paths, transitive closure (directed,
weighted, all pairs and single source)

* Lower bounds in the cell probe model, streaming
and distributed, using communication and
information theory, conditional lower bounds

* Maintaining expander graph decompositions

e Distributed broadcast with sublinear communication

Talk Outline

* Review of some important ideas

*ET Tree and batch parallel implementation of the
Monte Carlo [KKM+] method

* Application of the XOR method to distributed
networks

A Simple problem , but lots of interesting

N

0 N O U kW

ideas....

Union find

Even-Shiloach-Smaller components, breathfirst
search tree

Hierarchical clustering (topology trees)
Sparsification

Randomized dynamic decomposition
Deterministic dynamic decomposition
ET Trees

XOR Method

ldea 1: Union find—disjoint trees

Create a node x for every node in graph and
maintain a tree for each connected component

find(x) returns root of tree containing x

query (x,y): find(x)=find(y) iff x and y are connected
Insert (x,y): if find(x)#find(y), union(x,y)

union(x,y): union by weight-- find(x) becomes child
of find(y) if tree containing x is smaller (union by
weight)

While going up to root, set all pointers in tree to
root (path compression).

IDEA 2: Even Shiloach deletions only

In Parallel:To delete {a,b}

A. Maintain breadth-first

search tree '
&

Pick next “hook” to higher level
or drop a level and spend

O(deg) to reset list of hooks
For total cost O(m*depth)

IDEA 2: Even Shiloach deletions only

In Parallel:To delete {a,b}

A. Maintain breadth-first

'

Pick next “hook” to higher level
or drop a level and spend

O(deg) to reset list of hooks
For total cost O(m*depth)

Led to dynamic shortest path algs

IDEA 2: Even Shiloach deletions only

In Parallel: To delete {a,b}

A. Maintain breadthfirst
tree

Pick next hook on higher level or
drop a level and spend

O(deg) to reset hooks
Total cost-O(m* depth)

B. See if deletion splits graph
Into two components

search .

Until first search ends
cost~ # of edges in smaller
Each edge appears in £ Ig m smaller
components

search

Used for dynamic shortest path

Used for dynamic decomposition

ldea 3. Hierarchical clustering (via topology
trees)

Change to degree 3 graph by adding nodes

3. Hierarchical Clustering

Form m 3 connected clusters of size m?/3

3. Hierarchical Clustering

Keep “external” edges betw each pair of connected clusters;
Spanning tree inside cluster; spanning tree of clusters

e

o oo O

2. Hierarchical Clustering

If deleted external edge: find new external edge.
Find replacement external tree edge if needed

2. Hierarchical Clustering

- m?3 total edges inside each cluster
- m?/3 selected external edges

3. Hierarchical Clustering

Delete internal edge—>: check inside edges first or split cluster.
Merge with neighbor cluster if cluster is too small.

3. Hierarchical Clustering

Hierarchical decomposition, 30 pages later=>vm

3. Hierarchical Clustering

Gave rise to simpler hierarchical trees:
TOP trees, RC trees, parallel RC trees.

Idea 4 : Sparsification

Partition the edges

Determine spanning forest of each= sparse certificate

Idea 4: Sparsification

Partition edges

Union of spanning forests contains spanning forest of union

Idea 4. Sparsification

Parent graph = union of spanning forests of children

A

m/n

Propagate up change

Update time= (log m/n)*(cost for m<2n)

ldea.4: Sparsification

Parent = union of sparse certificates of children

.
Ah_AN

Propagate up change

Update time ~cost for graph of m<2n

-->0nly graphs of size 2n-2 ever need to be considered!

ldea 5: Sampling for dynamic decomposition

When a tree edge is deleted, randomly sample
nontree edges incident to the smaller component to
find replacement edge

’—
—-—
-
-—
—-—
-
-
‘7]

Else the cut is SPARSE
Check ALL the edges incident to the smallest component;
Move edges in cutset down to a “lower level”.

7

\‘ o

Cost per level =cost of searching smaller components + sampling cost

oo

Each edge looked at log n times per level (from idea (2))
+ sampling cost.

> Log n levels

Start search for
replacemt

Each edge looked at log n times per level (from idea (2))
+ sampling cost.

> Log n levels

Insertions done here,
with periodic rebuilds
) of levels.

IDEA 6: Deterministic dynamic decomposition (HDT)

Look at each edge in smaller component until replacemt edge is

found.
/f

\‘ o

Move edges which were looked at which are NOT in the cutset
to a lower level

New tree edge

Q Z Looked at before tree
B edge found

oo

(D——QJBM

W T 3O O

Each edge looked at no more than log n times.

Insertions done here,

> Log n

IDEA 7: “ET-TREES”

Dynamic decomposition
introduces new, simple data

structure to support
subtree queries, random

sampling

IDEA 7: "ET-TREES”

IDEA 7: "ET-TREES”
stored in augmented balanced search tree

occurances

/
R/IAIR|B|C/D|C/E|C|B/F|B|G|B|R

findroot, cut, link, update node value, sum of node values

e

IDEA 7: “ET-TREES”

Batch parallel implementation of ET trees

Batch parallel insert, delete, query (2019-eng, bhuiipala, Blelloch)

Implemented as unrooted circular
skip list of directed edges

O(k log (1+n/k)) exp work,
O(log n) depth w.h.p.

Batch parallel implementation of HDT

Batch parallel insert, delete, query (2019- Acar, Anderson, etal.)

Implemented as unrooted circular
skip list of directed edges

O(k log n log (1+n/k)) exp
amortized work
O(log® n) update depth w.h.p.

Observe: Let T any subset of V

If |cutset (V\T, T)|=1 then
Parity(Sum of degrees of nodes in T) =1

_ /

ldea 8: XOR method
Solves “CUTSET” PROBLEM

@en a dynamic forest of disjoint trees T in G \

w/constant prob., find an edge in the cutset (T,V\T)
for each T

Updates: insert edge, delete edge, make tree edge,
make non-tree edge.

00000000 ¢

Find edge(T) returns an edge in E in the cutset of

Idea 8: XOR method

To solve cutset problem:

 Each edge (a,b) has unique binary name <ab>

e For each node a, let
* v(a)=bitwise XOR (names of edges incident to node a)

IF there is exactly one edge {a,b} in
cutset of (TV\T) then

XOR, ..+ v(a) =<a,b>

(all other names cancel out)

Example:

Sums at nodes: 010101=(2,5)

ldea 8: XOR method
What if |cutset (T,V\T)|>1"

Maintain sample sets of edges in G:
* Fori=0to log(})

Pr(edge in Sample i)= ¥5'
e For each node:

* v;(a)= XOR(<a,b>in Sample i)

ldea 8: XOR method
What if |cutset (T V\T)|>1?

Maintain sample sets of edges in G:
* Fori=0to log(})

Pr(edge in Sample i)= ¥5'
e For each node:

* v;(a)= XOR(<a,b>in Sample i)

If T is not a spanning tree in G

* k<-maxis.t. XOR,;, v;(a) #<00..0>

* find_edge(T) returns XOR, ., ;v (a)

With constant prob,

* find edge(T) is an edge in the cutset and
* k=[log|cutset(T,V\T)|]

ldea 8: XOR method
What if |cutset (T V\T)|>1?

Maintain sample sets of edges in G:
* Fori=0to log(})

Pr(edge in Sample i)= ¥5'
e For each node:

* v;(a)= XOR(<a,b>in Sample i)

If T is not a spanning tree in G

* k<-maxis.t. XOR,;, v;(a) #<00..0>

* find_edge(T) returns XOR, ., ;v (a)

With constant prob,

* find edge(T) is an edge in the cutset and

e k= [log | cutset(T, V\T) ” Used to approximate cutset size

ldea 8: XOR method

Solution to dynamic connectivity?? (not quite)

 Updates must be oblivious to random bits

* Analysis assumes no dependence between tree
structure and random bits needed to find cutset
edge

ldea 8: XOR method

* Boruvka type construction

O(log n) Cutset data structures ¢ C;...C,, 1 ON G with forests
V=F, & F,.. CF

top

with their own randomness
spanning

-
ies <> <>

Forest

oo oo
00000006 ¢

j=TOP

ldea 8: XOR method

query(a,b): Return True iff in F, findroot(a) =findroot(b)

insert(a,b):

* insert edge {a,b} into cutset data structures ¢, C;...Cipp1
* |Ifquery(a,b) =False, add {a,b}to F; ... < F, by

* calling ¢, make tree edge {a,b}fori=1... top

DEF: Let T, denote tree in F, containing node a
T,is “unmatched” in F;if T,is no largerin F,,

ldea 8: XOR method

Build spanning forest in tiers

ldea 8: XOR method

Build spanning forest in tiers

(XYY TR

ldea 8: XOR method

Build spanning forest in tiers

ceccscss o

ldea 8: XOR method

Build spanning forest in tiers

ldea 8: XOR method

Deletion:

JOO- o0 e

ldea 8: XOR method

Deletion: If unmatched comp.
find new edge

ol

ldea 8: XOR method

Deletion: If unmatched comp.
find new edge

can cause_che\)

I
9 00@®

ldea 8: XOR method

Deletion: cycle edge is not a tree edge

N

{O \0“{/‘%

ldea 8: XOR method

Deletion:

cycle -> unmatched comp on higher level,
etc.

{O \0“%

ldea 8: XOR method

delete(a,b)

fori=1,..., top delete (a,b) from c,

for athen b do

For i=1,..., topif (a,b) in F,
If T, inF, isunmatched, (c,d) <-- ¢, .find edge(T,)
If (c,d) causes a cycle in some Tin F,
break cycle - ¢’ <--path_edge” (c,d) in F;\F;,

For k=j to top make nontree edge(e’)
For k=i to top make tree edge(c,d).

*path edge is not an ET-tree operation
Can afford O(log?) time for its implementation w/no change to
asymptotics

Can use link-cut trees, TOP trees, RC trees but these are harder to
implement for arbitrary trees, especially in batch parallel model.

Part 2: Batch parallel KKM+, communication
in distributed computing

Batch parallel implementation of KKM (Cann, K 2023)

TOOL BOX

* ET trees variant to enable simpler path edge

* Static parallel alg to compute
* spanning forest (Gazit 1991)
* spanning forest (E/F) relative to pre-existing forest
returns minimal subset of edges in E which link trees in F)

ET tree: path edge (a,b)

Given T, T, node disjoint trees in F; and their corresponding
intervals'on the circle, path edge(a,b)

returns edge {o, succ or pred(o)} where o is occurrence of node in T,
closest to T, or vice versa.

An interval for a subtree may
not be contiguous, but the
intervals do not cross

N 9

ET tree: path edge (a,b)

Given T, T, node disjoint trees in F; and their corresponding
intervals'on the circle, path edge(a,b)

returns edge {o, succ or pred(o)} where o is the occurrence of a
node in T, closest to T, or vice versa.

Can binary search to find o

Batch parallel implementation of KKM

* Cutset data structure is easy to Insert also easy to batch
batch parallelize using batch parallelize as
parallel ET trees.

: cutset data structures ¢y,
* O(log n) depth, O(log? n) work C1...Crop1 CAN be updated

to maintain O(log n) word independentlv usin
vectors which can be updated P Y &

independently. batch parallel update values

Query uses batch parallel
find trees

Batch parallel delete(S)

batchdelete (S) from all cutsets
for i=0 to top-1
Ri< = replacement edges found in lower tiers F;, j<i

1. Break cycles: C<--batch_path_edge(R,F,1 \ F;); make non-tree edges(C) in
I:i+1

2. make_tree_edge (R)in F;,
3. Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \F;,;), make tree edges (C’) in F,
4. Find new replacement edges
R<- Batch Find(T,) for each v in V(S), T, unmatched
R i<i+1 <-Riq U R; =Spanning_forest (R\F;,,)

make_tree-edges(R;) in F,;;

Batch parallel delete(S)

batchdelete (S) from all cutsets
for i=0 to top-1
Ri< = replacement edges found in lower tiers F;, j<i

1. Break cycles: C<--batch_path_edge(R,F,; \ F;); make non-tree edges(C) in
I:i+1

make_tree_edge (R) in F;,
Reinsert subset of C to maintain connectivity
C’<-- Spanning Forest(C \F;,;), make tree edges (C’) in F,
4. Find new replacement edges
R<- Batch Find(T,) for each v in V(S), T, unmatched
R i<i+1 <-Riq U R; =Spanning_forest (R\F;,,)

make_tree-edges(R;) in F,;;

log n tree edges may change for each deleted edge->
k * log n* log? n (log(1+n/k) work per deleted edge

Use of XOR method for asynchronous spanning tree
construction with sublinear communication

Use of XOR method: Sublinear communication in
distributed asynchronous network

Building a spanning tree in a distributed network,
where each node initially knows only its neighbors

Uses more properties of find edge;
* randomness of edge selected
e approximation of cutset

XOR method

All nodes awake:

* Low degree (< y/n log n) nodes send to all their neighbors
 With prob 1/4/n) nodes choose themselves as special
* Specials send to all their neighbors

XOR method
Grow tree T from node 1 in phases:

Phase:

A. Expand T recursively:

* low degree nodes bring in their all neighbors

* high degree nodes wait to hear from at least one special (w.h.p)

//
O\

 Specials bring in all their neighbors.

- o

XOR method

Then use find edge

Phase (cont’d):
B. Find an outgoing edge to a high degree node using find tree

OR

C. WAIT until the low degree nodes contact T

XOR method

How do you WAIT?? (Step C)

1. Do O(log n) find edge’s

 if only edges to low degree nodes, then whp, edges to low
degree nodes make up > % cutset; WAIT

 if noedges found, end algorithm
» else edge to high degree is found, end phase

2. Use find _edge to estimate cutset size K

XOR method
Wait (Step C cont’d)

3. For each edge in cut found, trigger leader with prob c Ig n/K

4. If leader receives c’lg n triggers, repeat Step C over
undiscovered edges in cut (remove found edges from all samples)

Conclusion and open problems

* Improvement (polylog?) sequential worst case Las
Vegas/Deterministic

* Improvement of sequential worst case Monte Carlo
or allow for a nonoblivious adversary.
O(log3 n) for insertions
O(log*n) for deletions

* In a distributed network, how much communication/time needed for
constructing a tree of depth close to diameter of graph?

0O(n3/2) for synchronous with depth O(D+n?/2) (Ghaffari,Kuhn 2018; Gimr,
Pandurangan
O(n3/2) for asynchronous with depth n, time n32(Mashreghi,K,2018)

m1to(1) communication in time D1*°() for asynchronous breadthfirst search tree
(Awerbuch 1989)

Thank youl

