Dynamic Connectivity

Valerie King University of Victoria BC Canada

Determining connectivity in a graph is easy!

0

Determining connectivity in a graph is easy!

0

Update: Insert edge {C,D}

Update: Delete edge {E,F}

QUERY(D,F): Are D and F?

n=number of nodes, m=number of edges

How to avoid O(m) cost of recomputing spanning forest with each update or running O(m) search for each query?

1960's and 70's

- Edge insertions only
- Union-Find data structure and
- Tarjan's α(m,n) amortized analysis

Deletions are much harder

Techniques rely on maintaining a spanning forest

When a tree edge is deleted...

How can we find a replacement edge?

A brief* history

Partially dynamic

- •1960's: Union-find insertions only (amortized) Tarjan's analysis (1975)
- •1981: Deletions-only (amortized) O(mn) Even-Shiloach ;
 - •improved to O(m + n polylog) (Monte Carlo) Aamand et al (2023)

Fully Dynamic

- •1983 O(vm) topology trees Fredrickson
- •1992,7: O(√n) sparsification Eppstein, Galil, Italiano, Nissenzweig
- •1995,8: O(log² n) amortized
 - (Las Vegas) Henzinger, K (1995) as improved by Henzinger, Thorup (1997)
 (deterministic) Holm, de Lichtenberg, Thorup [HDT] (1998), improved by Thorup; Huang, et al. to O(log n (log log n)²) (higher query time) (2022)
- •2013: polylog worst case Monte Carlo Kapron, K, Mountjoy [KKM]; •improved by Gibb, et al; Wang (2015).
- •2017: n^{o(1)} worst case Las Vegas Nanongkai, Saranurak, Wullff-Nilson
- •2020: n^{o(1)} worst case deterministic Chuzhoy, et al

In a variety of models

- Sequential
- Streaming
- Distributed
 - CONGEST, local, MPC
 - Synchronous/Asynchronous
- Parallel and Batch Parallel

Leading to related questions...

- Dynamic minimum spanning tree
- Dynamic tree data structures ET trees (1995) Henzinger, K
- Shortest paths, transitive closure (directed, weighted, all pairs and single source)
- Lower bounds in the cell probe model, streaming and distributed, using communication and information theory, conditional lower bounds
- Maintaining expander graph decompositions
- Distributed broadcast with sublinear communication

Talk Outline

- Review of some important ideas
- ET Tree and batch parallel implementation of the Monte Carlo [KKM+] method
- Application of the XOR method to distributed networks

A Simple problem , but lots of interesting ideas....

- 1. Union find
- 2. Even-Shiloach-Smaller components, breathfirst search tree
- 3. Hierarchical clustering (topology trees)
- 4. Sparsification
- 5. Randomized dynamic decomposition
- 6. Deterministic dynamic decomposition
- 7. ET Trees
- 8. XOR Method

Idea 1: Union find—disjoint trees

- Create a node x for every node in graph and maintain a tree for each connected component
- find(x) returns root of tree containing x
- query (x,y): find(x)=find(y) iff x and y are connected
- Insert (x,y): if find(x)≠find(y), union(x,y)
- union(x,y): union by weight-- find(x) becomes child of find(y) if tree containing x is smaller (<u>union by</u> <u>weight</u>)
- While going up to root, set all pointers in tree to root (path compression).

IDEA 2: Even Shiloach deletions only

In Parallel: To delete {a,b}

IDEA 2: Even Shiloach deletions only

In Parallel: To delete {a,b}

Led to dynamic shortest path algs

IDEA 2: Even Shiloach deletions only

In Parallel: To delete {a,b}

Idea 3. Hierarchical clustering (via topology trees)

Change to degree 3 graph by adding nodes

Form m $^{1/3}$ connected clusters of size m $^{2/3}$

Keep "external" edges betw each pair of connected clusters; Spanning tree inside cluster; spanning tree of clusters

If deleted external edge: find new external edge. Find replacement external tree edge if needed

2. Hierarchical Clustering

- m^{2/3} total edges inside each cluster
- m^{2/3} selected external edges

Delete internal edge \rightarrow : check inside edges first or split cluster. Merge with neighbor cluster if cluster is too small.

Hierarchical decomposition, 30 pages later $\rightarrow \sqrt{m}$

Gave rise to simpler hierarchical trees: TOP trees, RC trees, parallel RC trees.

Idea 4 : Sparsification

Partition the edges

Determine spanning forest of each= sparse certificate

Idea 4: Sparsification

Partition edges

Union of spanning forests contains spanning forest of union

Idea 4. Sparsification

Parent graph = union of spanning forests of children

Update time= (log m/n)*(cost for m<2n)

Idea.4: Sparsification

Parent = union of sparse certificates of children

Propagate up change

Update time ~cost for graph of m<2n

-->Only graphs of size 2n-2 ever need to be considered!

Idea 5: Sampling for dynamic decomposition

When a tree edge is deleted, randomly sample nontree edges incident to the smaller component to find replacement edge

Else the cut is SPARSE Check ALL the edges incident to the <u>smallest component</u>; Move edges in cutset down to a "lower level".

Cost per level =cost of searching smaller components + sampling cost

Each edge looked at log n times per level (from idea (2)) + sampling cost.

Each edge looked at log n times per level (from idea (2)) + sampling cost.

Log n levels

Insertions done here, with periodic rebuilds of levels.

IDEA 6: Deterministic dynamic decomposition (HDT)

Look at each edge in smaller component until replacemt edge is found.

Move edges which were looked at which are NOT in the cutset to a lower level

Each edge looked at no more than log n times.

IDEA 7: "ET-TREES"

Dynamic decomposition introduces new, simple data structure to support subtree queries, random sampling

IDEA 7: "ET-TREES"

IDEA 7: "ET-TREES" stored in augmented balanced search tree

IDEA 7: "ET-TREES"

Batch parallel implementation of ET trees

Batch parallel insert, delete, query (2019-Tseng, Dhulipala, Blelloch)

Implemented as unrooted circular skip list of directed edges

Batch parallel implementation of HDT

Batch parallel insert, delete, query (2019- Acar, Anderson, et al.)

O(k log n log (1+n/k)) exp amortized work O(log³ n) update depth w.h.p. Implemented as unrooted circular skip list of directed edges

Observe: Let T any subset of V

If |cutset (V\T, T)|=1 then Parity(Sum of degrees of nodes in T) =1

Idea 8: XOR method Solves "CUTSET" PROBLEM

Given a dynamic forest of disjoint trees T in G w/constant prob., find an edge in the cutset $(T,V\setminus T)$ for each T

Updates: insert edge, delete edge, make tree edge, make non-tree edge.

Find_edge(T) returns an edge in E in the cutset of
(T, V\T)

To solve cutset problem:

- Each edge (a,b) has unique binary name <ab>
- For each node **a**, let
- v(a)=bitwise XOR (names of edges incident to node a)

IF there is exactly one edge $\{a,b\}$ in cutset of $(T,V\setminus T)$ then XOR_{a in T} $v(a) = \langle a,b \rangle$

(all other names cancel out)

Example:

Sums at nodes: 010101=(2,5)

Idea 8: XOR method What if |cutset (T,V\T)|>1?

Maintain sample sets of edges in G:

• For i=0 to $\log\binom{n}{2}$

Pr(edge in Sample i)= $\frac{1}{2}^{i}$

- For each node:
 - v_i(a) = XOR(<a,b> in Sample i)

Idea 8: XOR method What if |cutset (T,V\T)|>1?

Maintain sample sets of edges in G:

• For i=0 to $\log\binom{n}{2}$

Pr(edge in Sample i)= $\frac{1}{2}^{i}$

- For each node:
 - v_i(a) = XOR(<a,b> in Sample i)

If T is not a spanning tree in G

- $k \le \max i \text{ s.t. XOR}_{a \text{ in } T} v_i(a) \ne <00..0>$
- find_edge(T) returns XOR_{a in T} v_K (a)
 With constant prob,
- find_edge(T) is an edge in the cutset and
- $k = [log|cutset(T, V \setminus T)]$

Idea 8: XOR method What if |cutset (T,V\T)|>1?

Maintain sample sets of edges in G:

• For i=0 to $\log\binom{n}{2}$

Pr(edge in Sample i)= $\frac{1}{2}^{i}$

- For each node:
 - v_i(a) = XOR(<a,b> in Sample i)

If T is not a spanning tree in G

- $k \le \max i \text{ s.t. XOR}_{a \text{ in } T} v_i(a) \ne <00..0>$
- find_edge(T) returns XOR_{a in T} v_K (a)
 With constant prob,
- find_edge(T) is an edge in the cutset and
- $k = [log | cutset(T, V \setminus T)]]$ Used to approximate cutset size

Solution to dynamic connectivity?? (not quite)

- Updates must be oblivious to random bits
- Analysis assumes no dependence between tree structure and random bits needed to find cutset edge

• Boruvka type construction O(log n) Cutset data structures $c_{0,}c_1...c_{top-1}$ on G with forests $V=F_0 \subseteq F_1 ... \subseteq F_{top}$

with their own randomness

query(a,b): Return True iff in F_{top} findroot(a) = findroot(b)

- <u>insert(a,b)</u>:
- insert edge {a,b} into cutset data structures c₀, c₁...c_{top-1}
- If query(a,b) = False, add $\{a,b\}$ to $F_1 \dots \subseteq F_{top}$ by
- calling c_{i.} make_tree_edge {a,b} for i=1 ... top

DEF: Let T_a denote tree in F_i containing node a T_a is "unmatched" in F_i if T_a is no larger in F_{i+1}

Build spanning forest in tiers

Build spanning forest in tiers

Build spanning forest in tiers

Build spanning forest in tiers

Deletion:

Deletion: If unmatched comp. find new edge

Deletion: If unmatched comp. find new edge can cause cycle

Deletion: cycle edge is not a tree edge

Deletion: cycle -> unmatched comp on higher level, etc.

delete(a,b)

for i=1,..., top delete (a,b) from c_i
for a then b do
For i=1,..., top if (a,b) in F_i
If T_a in F_i is unmatched, (c,d) <-- c_i.find edge(T_a)
If (c,d) causes a cycle in some T in F_j
break cycle -- e' <--path_edge* (c,d) in F_j \F_{j-1}
For k=j to top make_nontree edge(e')
For k=i to top make_tree edge(c,d).

*path_edge is not an ET-tree operation Can afford O(log²) time for its implementation w/no change to asymptotics

Can use link-cut trees, TOP trees, RC trees but these are harder to implement for arbitrary trees, especially in batch parallel model.

Part 2: Batch parallel KKM+, communication in distributed computing

Batch parallel implementation of KKM (Cann, K 2023)

TOOL BOX

- ET trees variant to enable simpler path_edge
- Static parallel alg to compute
 - spanning forest (Gazit 1991)
 - spanning forest (E/F) relative to pre-existing forest returns minimal subset of edges in E which link trees in F)

ET tree: path_edge (a,b)

Given T_a , T_b node disjoint trees in F_i and their corresponding intervals on the circle, path_edge(a,b)

returns edge {o, succ or pred(o)} where o is occurrence of node in T_a closest to T_b or vice versa.

ET tree: path_edge (a,b)

Given T_a , T_b node disjoint trees in F_i and their corresponding intervals on the circle, path_edge(a,b)

returns edge {o, succ or pred(o)} where o is the occurrence of a node in T_a closest to T_b or vice versa.

Batch parallel implementation of KKM

- Cutset data structure is easy to batch parallelize using batch parallel ET trees.
- O(log n) depth, O(log² n) work to maintain O(log n) word vectors which can be updated independently.

Insert also easy to batch parallelize as

cutset data structures $c_{0,}$ $c_1...c_{top-1}$ can be updated independently using

batch parallel update values

<u>Query</u> uses batch parallel find trees
Batch parallel delete(S)

batchdelete (S) from all cutsets

for i=0 to top-1

- $R_{j<l}$ = replacement edges found in lower tiers F_j , j<i
- 1. Break cycles: C<--batch_path_edge($R_{j<l}, F_{i+1} \setminus F_i$); make non-tree edges(C) in F_{i+1}
- **2.** make_tree_edge $(R_{j<l})$ in F_{i+1}
- 3. Reinsert subset of C to maintain connectivity

C'<-- Spanning Forest(C F_{i+1}), make tree edges (C') in F_{i+1}

4. Find new replacement edges

R<- Batch Find(T_v) for each v in V(S), T_v unmatched R_{j<i+1}<--R_{j<l} U R_i =Spanning_forest (R\F_{i+1}) make_tree-edges(R_i) in F_{i+1}

Batch parallel delete(S)

batchdelete (S) from all cutsets

for i=0 to top-1

- $R_{j<l}$ = replacement edges found in lower tiers F_j , j<i
- 1. Break cycles: C<--batch_path_edge($R_{j<l}, F_{i+1} \setminus F_i$); make non-tree edges(C) in F_{i+1}
- 2. make_tree_edge ($R_{j<l}$) in F_{i+1}
- 3. Reinsert subset of C to maintain connectivity

C'<-- Spanning Forest(C F_{i+1}), make tree edges (C') in F_{i+1}

4. Find new replacement edges

R<- Batch Find(T_v) for each v in V(S), T_v unmatched

 $R_{j < i+1} < --R_{j < i} \cup R_i = Spanning_forest (R \setminus F_{i+1})$

make_tree-edges(R_i) in F_{i+1}

log n tree edges may change for each deleted edge->
k * log n* log² n (log(1+n/k) work per deleted edge

Use of XOR method for asynchronous spanning tree construction with sublinear communication

Use of XOR method: Sublinear communication in distributed asynchronous network

Building a spanning tree in a distributed network, where each node initially knows only its neighbors

Uses more properties of find_edge;

- randomness of edge selected
- approximation of cutset

All nodes awake:

- Low degree (< $\sqrt{n} \log n$) nodes send to all their neighbors
- With prob $1/\sqrt{n}$) nodes choose themselves as special
- Specials send to all their neighbors

Grow tree T from node 1 in phases: Phase:

- A. Expand T recursively:
- low degree nodes bring in their all neighbors
- high degree nodes wait to hear from at least one special (w.h.p) and
- Specials bring in all their neighbors.

Then use find_edge

Phase (cont'd):

B. Find an outgoing edge to a high degree node using find_tree **OR**

C. WAIT until the low degree nodes contact T

How do you WAIT?? (Step C)

- 1. Do O(log n) find_edge's
 - if only edges to low degree nodes, then whp, edges to low degree nodes make up > ½ cutset; WAIT
 - if no edges found, end algorithm
 - else edge to high degree is found, end phase
- 2. Use find_edge to estimate cutset size K

Wait (Step C cont'd)

3. For each edge in cut found, trigger leader with prob c $\lg n/K$

4. If leader receives c'lg n triggers, repeat Step C over undiscovered edges in cut (remove found edges from all samples)

Conclusion and open problems

- Improvement (polylog?) sequential worst case Las Vegas/Deterministic
- Improvement of sequential worst case Monte Carlo or allow for a nonoblivious adversary.
 - O(log³ n) for insertions
 - O(log⁴ n) for deletions
- In a distributed network, how much communication/time needed for constructing a tree of depth close to diameter of graph?

O(n^{3/2}) for synchronous with depth O(D+n^{1/2}) (Ghaffari,Kuhn 2018; Gimr, Pandurangan

 $O(n^{3/2})$ for asynchronous with depth n, time $n^{3/2}$ (Mashreghi,K,2018)

 $m^{1+o(1)}$ communication in time $D^{1+o(1)}$ for asynchronous breadthfirst search tree (Awerbuch 1989)

Thank you!